Asymptotic Analysis of RQ-System with Feedback and Batch Poisson Arrival Under the Condition of Increasing Average Waiting Time in Orbit / A. A. Nazarov, S. V. Rozhkova, E. Yu. Titarenko

Уровень набора: Communications in Computer and Information ScienceОсновной Автор-лицо: Nazarov, A. A., Aleksandr AnatoljevichАльтернативный автор-лицо: Rozhkova, S. V., mathematician, Professor of Tomsk Polytechnic University, Doctor of Physical and Mathematical Sciences, 1971-, Svetlana Vladimirovna;Titarenko, E. Yu., mathematician, senior lecturer of Tomsk Polytechnic University, 1975-, Ekaterina YurievnaКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Школа базовой инженерной подготовки, Отделение математики и информатикиЯзык: английский.Резюме или реферат: The paper studies the retrial queueing system M [n] /M/1 with feedback and batch Poisson arrival. Customers for the system come in groups. Not more than one customer is served at once, others wait in the orbit. Having been served, the customer leaves the system or goes to re-service or into the orbit. An asymptotic analysis method is used to find the stationary distribution of the number of customers in the orbit. A long delay between customers from the orbit is proposed as an asymptotic condition. It is proved that the asymptotic probability distribution of the number of customers in the orbit is Gaussian. As a result the parameters of this distribution are obtained. The calculations to determine the range of the method applicability are carried out. The accuracy of the approximation is compared to numerical results obtained by matrix method..Примечания о наличии в документе библиографии/указателя: [References: 13 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | queuing system | RQ system | batch arrival | feedback | asymptotic analysis | массовое обслуживание | системы | RQ-системы | обратная связь | асимптотический анализ Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 13 tit.]

The paper studies the retrial queueing system M [n] /M/1 with feedback and batch Poisson arrival. Customers for the system come in groups. Not more than one customer is served at once, others wait in the orbit. Having been served, the customer leaves the system or goes to re-service or into the orbit. An asymptotic analysis method is used to find the stationary distribution of the number of customers in the orbit. A long delay between customers from the orbit is proposed as an asymptotic condition. It is proved that the asymptotic probability distribution of the number of customers in the orbit is Gaussian. As a result the parameters of this distribution are obtained. The calculations to determine the range of the method applicability are carried out. The accuracy of the approximation is compared to numerical results obtained by matrix method.

Для данного заглавия нет комментариев.

оставить комментарий.