A two-dimensional soliton system of vortex and Q-ball / A. Yu. Loginov
Уровень набора: Physics Letters BЯзык: английский.Резюме или реферат: The (2+1)-dimensional gauge model describing two complex scalar fields that interact through a common Abelian gauge field is considered. It is shown that the model has a soliton solution that describes a system consisting of a vortex and a Q-ball. This two-dimensional system is electrically neutral, nevertheless it possesses a nonzero electric field. Moreover, the soliton system has a quantized magnetic flux and a nonzero angular momentum. Properties of this vortex-Q-ball system are investigated by analytical and numerical methods. It is found that the system combines properties of topological and nontopological solitons..Примечания о наличии в документе библиографии/указателя: [References.: 15 tit.].Тематика: электронный ресурс | труды учёных ТПУ | vortex | flux quantizatio | Q-ball | noether charge | вихри | квантование | потоки | солитоны | калибровочные модели Ресурсы он-лайн:Щелкните здесь для доступа в онлайнНет реальных экземпляров для этой записи
Title screen
[References.: 15 tit.]
The (2+1)-dimensional gauge model describing two complex scalar fields that interact through a common Abelian gauge field is considered. It is shown that the model has a soliton solution that describes a system consisting of a vortex and a Q-ball. This two-dimensional system is electrically neutral, nevertheless it possesses a nonzero electric field. Moreover, the soliton system has a quantized magnetic flux and a nonzero angular momentum. Properties of this vortex-Q-ball system are investigated by analytical and numerical methods. It is found that the system combines properties of topological and nontopological solitons.
Для данного заглавия нет комментариев.
Личный кабинет оставить комментарий.