Impact of ZrO2 additive on the microstructure, magnetic properties, and temperature dependence of the initial permeability of LiTiZn ferrite ceramics / A. V. Malyshev, A. B. Petrova, A. P. Surzhikov

Уровень набора: Journal of Materials Science: Materials in ElectronicsОсновной Автор-лицо: Malyshev, A. V., Specialist in the field of electrical engineering, Senior researcher at Tomsk Polytechnic University, Candidate of Physics and Mathematics (PhD Phys.-Math.), 1978-, Andrei VladimirovichАльтернативный автор-лицо: Petrova, A. B., specialist in the field of non-destructive testing, Associate Scientist of Tomsk Polytechnic University, 1992-, Anna Borisovna;Surzhikov, A. P., physicist, Professor of Tomsk Polytechnic University, doctor of physical and mathematical sciences (DSc), 1951-, Anatoly PetrovichКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Инженерная школа неразрушающего контроля и безопасности, Отделение контроля и диагностикиЯзык: английский.Резюме или реферат: The effect of the diamagnetic ZrO2 addition on the microstructure and magnetic properties of LiTiZn ferrite ceramics, including the shape and parameters of the temperature dependence of the initial permeability, has been investigated. The defect structure of ferrite ceramic samples is assessed according to our earlier proposed method based on the mathematical treatment of the experimental temperature dependencies of the initial permeability. It was found that the defect structure of ferrite ceramics increased by 350% with an increase in the concentration of the ZrO2 additive in the range of (0–0.5) wt.%. In this case, for the same samples, the increase in the true physical broadening of diffraction peaks is only 20%, and the coercive force by 50%. Simultaneously, the maximum of the experimental temperature dependence of the initial permeability dropped by 45%. The microstructure of all samples is characterized with a similar average grain size according to the SEM data. However, samples with 0.5 wt.% of ZrO2 are characterized by the formation of conglomerates. A linear relationship was obtained between the defect structure and the width of the diffraction peaks, which indicates that this parameter is related to the elastic stress of ferrite ceramics. These results suggest that the high sensitive proposed method can be recommended for impurity and defect monitoring of soft ferrite products..Примечания о наличии в документе библиографии/указателя: [References: 16 tit.].Тематика: электронный ресурс | труды учёных ТПУ | магнитные свойства | ферритовая керамика | дефекты | примеси Ресурсы он-лайн:Щелкните здесь для доступа в онлайн | Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 16 tit.]

The effect of the diamagnetic ZrO2 addition on the microstructure and magnetic properties of LiTiZn ferrite ceramics, including the shape and parameters of the temperature dependence of the initial permeability, has been investigated. The defect structure of ferrite ceramic samples is assessed according to our earlier proposed method based on the mathematical treatment of the experimental temperature dependencies of the initial permeability. It was found that the defect structure of ferrite ceramics increased by 350% with an increase in the concentration of the ZrO2 additive in the range of (0–0.5) wt.%. In this case, for the same samples, the increase in the true physical broadening of diffraction peaks is only 20%, and the coercive force by 50%. Simultaneously, the maximum of the experimental temperature dependence of the initial permeability dropped by 45%. The microstructure of all samples is characterized with a similar average grain size according to the SEM data. However, samples with 0.5 wt.% of ZrO2 are characterized by the formation of conglomerates. A linear relationship was obtained between the defect structure and the width of the diffraction peaks, which indicates that this parameter is related to the elastic stress of ferrite ceramics. These results suggest that the high sensitive proposed method can be recommended for impurity and defect monitoring of soft ferrite products.

Для данного заглавия нет комментариев.

оставить комментарий.