Boosting Atomic Orbit Search Using Dynamic-Based Learning for Feature Selection / Mohamed Abd Elaziz, A. Laith, Yo. Dalia [et al.]

Уровень набора: MathematicsАльтернативный автор-лицо: Mohamed Abd Elaziz;Laith, A., Abualigah;Dalia, Yo., Yousri;Oliva Navarro, D. A., specialist in the field of informatics and computer technology, Professor of Tomsk Polytechnic University, 1983-, Diego Alberto;Mohammed A. A. Al-Qaness;Mohammad H. Nadimi-Shahraki;Ewees, A. A., Ahmed;Songfeng, L., Lu;Rehab, A. I., Ali IbrahimКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Инженерная школа информационных технологий и робототехники, Отделение информационных технологийЯзык: английский.Резюме или реферат: Feature selection (FS) is a well-known preprocess step in soft computing and machine learning algorithms. It plays a critical role in different real-world applications since it aims to determine the relevant features and remove other ones. This process (i.e., FS) reduces the time and space complexity of the learning technique used to handle the collected data. The feature selection methods based on metaheuristic (MH) techniques established their performance over all the conventional FS methods. So, in this paper, we presented a modified version of new MH techniques named Atomic Orbital Search (AOS) as FS technique. This is performed using the advances of dynamic opposite-based learning (DOL) strategy that is used to enhance the ability of AOS to explore the search domain. This is performed by increasing the diversity of the solutions during the searching process and updating the search domain. A set of eighteen datasets has been used to evaluate the efficiency of the developed FS approach, named AOSD, and the results of AOSD are compared with other MH methods. From the results, AOSD can reduce the number of features by preserving or increasing the classification accuracy better than other MH techniques..Примечания о наличии в документе библиографии/указателя: [References: 57 tit.].Тематика: электронный ресурс | труды учёных ТПУ | soft computing | machine learning | feature selection (FS) | metaheuristic (MH) | atomic orbital search (AOS) | dynamic opposite-based learning (DOL) | вычисления | машинное обучение | метаэвристика | атомно-орбитальные модели Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 57 tit.]

Feature selection (FS) is a well-known preprocess step in soft computing and machine learning algorithms. It plays a critical role in different real-world applications since it aims to determine the relevant features and remove other ones. This process (i.e., FS) reduces the time and space complexity of the learning technique used to handle the collected data. The feature selection methods based on metaheuristic (MH) techniques established their performance over all the conventional FS methods. So, in this paper, we presented a modified version of new MH techniques named Atomic Orbital Search (AOS) as FS technique. This is performed using the advances of dynamic opposite-based learning (DOL) strategy that is used to enhance the ability of AOS to explore the search domain. This is performed by increasing the diversity of the solutions during the searching process and updating the search domain. A set of eighteen datasets has been used to evaluate the efficiency of the developed FS approach, named AOSD, and the results of AOSD are compared with other MH methods. From the results, AOSD can reduce the number of features by preserving or increasing the classification accuracy better than other MH techniques.

Для данного заглавия нет комментариев.

оставить комментарий.