Semiclassical Spectral Series Localized on a Curve for the Gross–Pitaevskii Equation with a Nonlocal Interaction / A. E. Kulagin, A. V. Shapovalov, A. Yu. Trifonov

Уровень набора: SymmetryОсновной Автор-лицо: Kulagin, A. E., mathematician, laboratory assistant of Tomsk Polytechnic University, 1992-, Anton EvgenievichАльтернативный автор-лицо: Shapovalov, A. V., mathematician, Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences, 1949-, Aleksandr Vasilyevich;Trifonov, A. Yu., physicist, mathematician, Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences, 1963-, Andrey YurievichКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Школа базовой инженерной подготовки, Отделение математики и информатикиЯзык: английский.Страна: .Резюме или реферат: We propose the approach to constructing semiclassical spectral series for the generalized multidimensional stationary Gross–Pitaevskii equation with a nonlocal interaction term. The eigenvalues and eigenfunctions semiclassically concentrated on a curve are obtained. The curve is described by the dynamic system of moments of solutions to the nonlocal Gross–Pitaevskii equation. We solve the eigenvalue problem for the nonlocal stationary Gross–Pitaevskii equation basing on the semiclassical asymptotics found for the Cauchy problem of the parametric family of linear equations associated with the time-dependent Gross–Pitaevskii equation in the space of extended dimension. The approach proposed uses symmetries of equations in the space of extended dimension..Примечания о наличии в документе библиографии/указателя: [References: 50 tit.].Тематика: электронный ресурс | труды учёных ТПУ | stationary Gross–Pitaevskii equation | nonlocal interaction | nonlinear spectral problem | Bose–Einstein condensate | semiclassical approximation | symmetry operators Ресурсы он-лайн:Щелкните здесь для доступа в онлайн | Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 50 tit.]

We propose the approach to constructing semiclassical spectral series for the generalized multidimensional stationary Gross–Pitaevskii equation with a nonlocal interaction term. The eigenvalues and eigenfunctions semiclassically concentrated on a curve are obtained. The curve is described by the dynamic system of moments of solutions to the nonlocal Gross–Pitaevskii equation. We solve the eigenvalue problem for the nonlocal stationary Gross–Pitaevskii equation basing on the semiclassical asymptotics found for the Cauchy problem of the parametric family of linear equations associated with the time-dependent Gross–Pitaevskii equation in the space of extended dimension. The approach proposed uses symmetries of equations in the space of extended dimension.

Для данного заглавия нет комментариев.

оставить комментарий.