Experimental Study and Mathematical Modeling of the Processes Occurring in ZrN Coating/Silumin Substrate Systems under Pulsed Electron Beam Irradiation / N. N. Koval, T. V. Koval, O. V. Krysina [et al.]

Уровень набора: CoatingsАльтернативный автор-лицо: Koval, N. N., specialist in the field of electronics, Professor of Tomsk Polytechnic University, Doctor of technical sciences, 1948-, Nikolay Nikolaevich;Koval, T. V., mathematician, physicist, Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences, 1953-, Tamara Vasilievna;Krysina, O. V., Olga Vasiljevna;Ivanov, Yu. F., Yury Fedorovich;Teresov, A. D., Anton Dmitrievich;Moskvin, P. V., Pavel Vladimirovich;My Kim An Tran;Prokopenko, N. A., Nikita Andreevich;Petrikova, E. A., Elizaveta AlekseevnaКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Инженерная школа информационных технологий и робототехники, Отделение информационных технологийЯзык: английский.Страна: .Резюме или реферат: This paper presents a study of a combined modification of silumin, which included deposition of a ZrN coating on a silumin substrate and subsequent treatment of the coating/substrate system with a submillisecond pulsed electron beam. The local temperature on the samples in the electron-beam-affected zone and the thickness of the melt zone were measured experimentally and calculated using a theoretical model. The Stefan problem was solved numerically for the fast heating of bare and ZrN-coated silumin under intense electron beam irradiation. Time variations of the temperature field, the position of the crystallization front, and the speed of the front movement have been calculated. It was found that when the coating thickness was increased from 0.5 to 2 [mu]m, the surface temperature of the samples increased from 760 to 1070 °C, the rise rate of the surface temperature increased from 6×107 to 9×107 K/s, and the melt depth was no more than 57 μm. The speed of the melt front during the pulse was 3×105 [mu]m/s. Good agreement was observed between the experimental and theoretical values of the temperature characteristics and melt zone thickness..Примечания о наличии в документе библиографии/указателя: [References: 40 tit.].Тематика: электронный ресурс | труды учёных ТПУ | pulsed electron beam | electron beam treatment | vacuum arc deposition | ZrN coating | silumin substrate | coating/substrate system | temperature measurement | mathematical modeling | crystallization rate | melt depth | импульсные электронные пучки | электронно-лучевая обработка | вакуумно-дуговое напыление | покрытия | подложки | математическое моделирование | кристаллизация | таяние | температура Ресурсы он-лайн:Щелкните здесь для доступа в онлайн | Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 40 tit.]

This paper presents a study of a combined modification of silumin, which included deposition of a ZrN coating on a silumin substrate and subsequent treatment of the coating/substrate system with a submillisecond pulsed electron beam. The local temperature on the samples in the electron-beam-affected zone and the thickness of the melt zone were measured experimentally and calculated using a theoretical model. The Stefan problem was solved numerically for the fast heating of bare and ZrN-coated silumin under intense electron beam irradiation. Time variations of the temperature field, the position of the crystallization front, and the speed of the front movement have been calculated. It was found that when the coating thickness was increased from 0.5 to 2 [mu]m, the surface temperature of the samples increased from 760 to 1070 °C, the rise rate of the surface temperature increased from 6×107 to 9×107 K/s, and the melt depth was no more than 57 μm. The speed of the melt front during the pulse was 3×105 [mu]m/s. Good agreement was observed between the experimental and theoretical values of the temperature characteristics and melt zone thickness.

Для данного заглавия нет комментариев.

оставить комментарий.