Comparative study of 1,2-dichlorethane decomposition over Ni-based catalysts with formation of filamentous carbon / A. A. Vedyagin, A. M. Volodin, R. M. Kenzhin [et al.]
Уровень набора: Catalysis TodayЯзык: английский.Резюме или реферат: Catalytic chemical vapor deposition of 1,2-dichlorethane over Ni-based catalysts into carbon nanostructured materials was studied. The catalysts were prepared by mechanochemical activation and by metal dusting of bulk nickel-containing alloy precursors. Model Ni-M alloys, where M is Co, Cu, and Fe, were obtained by coprecipitation technique. Loading of M in the samples was varied in a range of 1–5 at.%. Pure nickel was used a reference. The kinetics of carbon deposition was investigated using flow reactor equipped with McBain balances. The samples of carbon product were characterized by nitrogen adsorption, scanning and transmission electron microscopies. The hydrogen addition into reaction mixture was shown to have opposite effect on both catalytic behavior and carbon yield depending on catalyst’s nature. Segmented structure of carbon filaments formed specifies its developed surface area. Both bulk chlorination of nickel particles and its blockage by dense carbon deposits in the case of mechanochemically prepared samples were suggested to be responsible for rapid deactivation of the catalyst..Примечания о наличии в документе библиографии/указателя: [References: 36 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | nickel alloys | mechanochemical activation | metal dusting | CCVD | carbon nanomaterials | segmented structure | никелевые сплавы | механохимическая активация | напыления | углеродные наноматериалы | катализаторы Ресурсы он-лайн:Щелкните здесь для доступа в онлайнTitle screen
[References: 36 tit.]
Catalytic chemical vapor deposition of 1,2-dichlorethane over Ni-based catalysts into carbon nanostructured materials was studied. The catalysts were prepared by mechanochemical activation and by metal dusting of bulk nickel-containing alloy precursors. Model Ni-M alloys, where M is Co, Cu, and Fe, were obtained by coprecipitation technique. Loading of M in the samples was varied in a range of 1–5 at.%. Pure nickel was used a reference. The kinetics of carbon deposition was investigated using flow reactor equipped with McBain balances. The samples of carbon product were characterized by nitrogen adsorption, scanning and transmission electron microscopies. The hydrogen addition into reaction mixture was shown to have opposite effect on both catalytic behavior and carbon yield depending on catalyst’s nature. Segmented structure of carbon filaments formed specifies its developed surface area. Both bulk chlorination of nickel particles and its blockage by dense carbon deposits in the case of mechanochemically prepared samples were suggested to be responsible for rapid deactivation of the catalyst.
Для данного заглавия нет комментариев.