X-ray Bragg Ptychography on a Single InGaN/GaN Core-Shell Nanowire / D. Dzhigaev, T. Stankevic, Zh. Bi [et al.]
Уровень набора: ACS NanoЯзык: английский.Резюме или реферат: The future of solid-state lighting can be potentially driven by applications of InGaN/GaN core–shell nanowires. These heterostructures provide the possibility for fine-tuning of functional properties by controlling a strain state between mismatched layers. We present a nondestructive study of a single 400 nm-thick InGaN/GaN core–shell nanowire using two-dimensional (2D) X-ray Bragg ptychography (XBP) with a nanofocused X-ray beam. The XBP reconstruction enabled the determination of a detailed three-dimensional (3D) distribution of the strain in the particular nanowire using a model based on finite element method. We observed the strain induced by the lattice mismatch between the GaN core and InGaN shell to be in the range from -0.1% to 0.15% for an In concentration of 30%. The maximum value of the strain component normal to the facets was concentrated at the transition region between the main part of the nanowire and the GaN tip. In addition, a variation in misfit strain relaxation between the axial growth and in-plane directions was revealed..Примечания о наличии в документе библиографии/указателя: [References: 21 tit.].Тематика: электронный ресурс | труды учёных ТПУ | X-rays | plastics | nitrides | scattering | physical and chemical processes | рентген | пластмассы | нитриды | рассеяние | физико-химические процессы | нанопровода Ресурсы он-лайн:Щелкните здесь для доступа в онлайнTitle screen
[References: 21 tit.]
The future of solid-state lighting can be potentially driven by applications of InGaN/GaN core–shell nanowires. These heterostructures provide the possibility for fine-tuning of functional properties by controlling a strain state between mismatched layers. We present a nondestructive study of a single 400 nm-thick InGaN/GaN core–shell nanowire using two-dimensional (2D) X-ray Bragg ptychography (XBP) with a nanofocused X-ray beam. The XBP reconstruction enabled the determination of a detailed three-dimensional (3D) distribution of the strain in the particular nanowire using a model based on finite element method. We observed the strain induced by the lattice mismatch between the GaN core and InGaN shell to be in the range from -0.1% to 0.15% for an In concentration of 30%. The maximum value of the strain component normal to the facets was concentrated at the transition region between the main part of the nanowire and the GaN tip. In addition, a variation in misfit strain relaxation between the axial growth and in-plane directions was revealed.
Для данного заглавия нет комментариев.