Bottom-up fabrication of graphene-based conductive polymer carpets for optoelectronics / Zhang Tao, R. D. Rodriguez (Rodriges) Contreras, I. Amin [et al.]

Уровень набора: Journal of Materials Chemistry CАльтернативный автор-лицо: Zhang Tao;Rodriguez (Rodriges) Contreras, R. D., Venezuelan physicist, doctor of science, Professor of Tomsk Polytechnic University, 1982-, Raul David;Amin, I., Ihsan;Gasiorowsk, J., Jacek;Rahaman, M., Manfujur;Wenbo, Sh., Sheng;Kalbacova, Ja., Jana;Sheremet, E. S., physicist, Professor of Tomsk Polytechnic University, 1988-, Evgeniya Sergeevna;Rodriguez (Rodriges) Contreras, R. D., Venezuelan physicist, doctor of science, Professor of Tomsk Polytechnic University, 1982-, Raul David;Rainer, J., JordanКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Исследовательская школа химических и биомедицинских технологий, (2017- );Национальный исследовательский Томский политехнический университет, Исследовательская школа физики высокоэнергетических процессов, (2017- )Язык: английский.Страна: .Резюме или реферат: The covalent attachment of one dimensional (1D) polymer brush onto a two-dimensional (2D) material presents an appealing strategy to fabricate anisotropic polymer membranes, namely “polymer carpets”. Conductive polymer carpets that are based on graphene and conductive polymers are especially interesting due to their potential in microelectronics, actuators and optoelectronics. Here we describe a versatile method for the covalent grafting of the poly(3-hexylthiophene) (P3HT) brush onto large area graphene to fabricate conductive polymer carpets through a combination of photografting polymerization and Kumada catalyst transfer polycondensation (KCTP) to grow P3HT (up to 260 nm) on single layer graphene forming conductive polymer carpets (i.e. G-PS-P3HT). Raman mapping revealed that the grafting reactions occurred on native graphene defects, without deteriorating the conjugation plane of graphene. The advanced architecture of G-PS-P3HT resulted in a high photocurrent (ca. 0.3 mA cm−2) under light irradiation in a junction with MoS2 to form efficient an p-n heterostructure, with promising potential in optoelectronics..Примечания о наличии в документе библиографии/указателя: [References: 69 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | полимерные мембраны | оптоэлектроника | графены Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 69 tit.]

The covalent attachment of one dimensional (1D) polymer brush onto a two-dimensional (2D) material presents an appealing strategy to fabricate anisotropic polymer membranes, namely “polymer carpets”. Conductive polymer carpets that are based on graphene and conductive polymers are especially interesting due to their potential in microelectronics, actuators and optoelectronics. Here we describe a versatile method for the covalent grafting of the poly(3-hexylthiophene) (P3HT) brush onto large area graphene to fabricate conductive polymer carpets through a combination of photografting polymerization and Kumada catalyst transfer polycondensation (KCTP) to grow P3HT (up to 260 nm) on single layer graphene forming conductive polymer carpets (i.e. G-PS-P3HT). Raman mapping revealed that the grafting reactions occurred on native graphene defects, without deteriorating the conjugation plane of graphene. The advanced architecture of G-PS-P3HT resulted in a high photocurrent (ca. 0.3 mA cm−2) under light irradiation in a junction with MoS2 to form efficient an p-n heterostructure, with promising potential in optoelectronics.

Для данного заглавия нет комментариев.

оставить комментарий.