Symmetry operators and separation of variables in the (2+1)-dimensional Dirac equation with external electromagnetic field / A. V. Shapovalov, A. I. Breev
Уровень набора: International Journal of Geometric Methods in Modern Physics, Scientific JournalЯзык: английский.Страна: .Резюме или реферат: We obtain and analyze equations determining first-order differential symmetry operators with matrix coefficients for the Dirac equation with an external electromagnetic potential in a (2+1)-dimensional Riemann (curved) spacetime. Nonequivalent complete sets of mutually commuting symmetry operators are classified in a (2+1)-dimensional Minkowski (flat) space. For each of the sets, we carry out a complete separation of variables in the Dirac equation and find a corresponding electromagnetic potential permitting separation of variables..Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | (2+1)-dimensional Dirac equation | symmetry operators | separation of variables Ресурсы он-лайн:Щелкните здесь для доступа в онлайнНет реальных экземпляров для этой записи
Title screen
We obtain and analyze equations determining first-order differential symmetry operators with matrix coefficients for the Dirac equation with an external electromagnetic potential in a (2+1)-dimensional Riemann (curved) spacetime. Nonequivalent complete sets of mutually commuting symmetry operators are classified in a (2+1)-dimensional Minkowski (flat) space. For each of the sets, we carry out a complete separation of variables in the Dirac equation and find a corresponding electromagnetic potential permitting separation of variables.
Для данного заглавия нет комментариев.
Личный кабинет оставить комментарий.