Quantifying Chaos by Various Computational Methods. Part 2: Vibrations of the Bernoulli–Euler Beam Subjected to Periodic and Colored Noise / J. Awrejcewicz, A. V. Krysko, N. P. Erofeev [et al.]

Уровень набора: EntropyАльтернативный автор-лицо: Awrejcewicz, J., Jan;Krysko, A. V., specialist in the field of Informatics and computer engineering, programmer Tomsk Polytechnic University, Professor, doctor of physico-mathematical Sciences, 1967-, Anton Vadimovich;Erofeev, N. P., Nikolay Pavlovich;Dobriyan, V. V., Vitaly Vyacheslavovich;Barulina, M. A., Marina Aleksandrovna;Krysko, V. A., VadimКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Институт кибернетики, Кафедра инженерной графики и промышленного дизайна, Научно-учебная лаборатория 3D моделированияЯзык: английский.Страна: .Резюме или реферат: In this part of the paper, the theory of nonlinear dynamics of flexible Euler–Bernoulli beams (the kinematic model of the first-order approximation) under transverse harmonic load and colored noise has been proposed. It has been shown that the introduced concept of phase transition allows for further generalization of the problem. The concept has been extended to a so-called noise-induced transition, which is a novel transition type exhibited by nonequilibrium systems embedded in a stochastic fluctuated medium, the properties of which depend on time and are influenced by external noise. Colored noise excitation of a structural system treated as a system with an infinite number of degrees of freedom has been studied..Примечания о наличии в документе библиографии/указателя: [References: 45 tit.].Тематика: электронный ресурс | труды учёных ТПУ | geometric nonlinearity | Bernoulli–Euler beam | colored noise | noise induced transitions | true chaos | Lyapunov exponents | wavelets Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 45 tit.]

In this part of the paper, the theory of nonlinear dynamics of flexible Euler–Bernoulli beams (the kinematic model of the first-order approximation) under transverse harmonic load and colored noise has been proposed. It has been shown that the introduced concept of phase transition allows for further generalization of the problem. The concept has been extended to a so-called noise-induced transition, which is a novel transition type exhibited by nonequilibrium systems embedded in a stochastic fluctuated medium, the properties of which depend on time and are influenced by external noise. Colored noise excitation of a structural system treated as a system with an infinite number of degrees of freedom has been studied.

Для данного заглавия нет комментариев.

оставить комментарий.