Study of evaporating the irradiated graphite in equilibrium low-temperature plasma, Electronic resource / E. V. Bespala, I. Yu. Novoselov, A. O. Pavlyuk, S. G. Kotlyarevsky
Уровень набора: Thermophysics and AeromechanicsЯзык: английский.Страна: .Резюме или реферат: The paper describes a problem of accumulation of irradiated graphite due to operation of uranium-graphite nuclear reactors. The main noncarbon contaminants that contribute to the overall activity of graphite elements are iso-topes 137Cs, 60Co, 90Sr, 36Cl, and 3H. A method was developed for processing of irradiated graphite ensuring the volu-metric decontamination of samples. The calculation results are presented for equilibrium composition of plasma-chemical reactions in systems “irradiated graphite-argon” and “irradiated graphite-helium” for a wide range of tem-peratures. The paper describes a developed mathematical model for the process of purification of a porous graphite surface treated by equilibrium low-temperature plasma. The simulation results are presented for the rate of sublimation of radioactive contaminants as a function of plasma temperature and plasma flow velocity when different plasma-forming gases are used. The extraction coefficient for the contaminant 137Cs from the outer side of graphite pores was calculated. The calculations demonstrated the advantages of using a lighter plasma forming gas, i.e., helium..Примечания о наличии в документе библиографии/указателя: [References: 12 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | irradiated graphite | plasma | processing | decontamination Ресурсы он-лайн:Щелкните здесь для доступа в онлайнTitle screen
[References: 12 tit.]
The paper describes a problem of accumulation of irradiated graphite due to operation of uranium-graphite nuclear reactors. The main noncarbon contaminants that contribute to the overall activity of graphite elements are iso-topes 137Cs, 60Co, 90Sr, 36Cl, and 3H. A method was developed for processing of irradiated graphite ensuring the volu-metric decontamination of samples. The calculation results are presented for equilibrium composition of plasma-chemical reactions in systems “irradiated graphite-argon” and “irradiated graphite-helium” for a wide range of tem-peratures. The paper describes a developed mathematical model for the process of purification of a porous graphite surface treated by equilibrium low-temperature plasma. The simulation results are presented for the rate of sublimation of radioactive contaminants as a function of plasma temperature and plasma flow velocity when different plasma-forming gases are used. The extraction coefficient for the contaminant 137Cs from the outer side of graphite pores was calculated. The calculations demonstrated the advantages of using a lighter plasma forming gas, i.e., helium.
Для данного заглавия нет комментариев.