Carbon Dioxide Applications for Enhanced Oil Recovery Assisted by Nanoparticles: Recent Developments / M. Al-Shargabi, Sh. Davoodi, D. A. Wood [et al.]

Уровень набора: ACS OmegaАльтернативный автор-лицо: Al-Shargabi, M., specialist in the field of petroleum engineering, Engineer of Tomsk Polytechnic University, 1993-, Mohammed;Davoodi, Sh., specialist in the field of petroleum engineering, Research Engineer of Tomsk Polytechnic University, 1990-, Shadfar;Wood, D. A., David;Rukavishnikov, V. S., specialist in the field of oil and gas business, Engineer of Tomsk Polytechnic University, 1984-, Valery Sergeevich;Minaev, K. M., specialist in the field of oil and gas business, associate Professor of Tomsk Polytechnic University, candidate of chemical Sciences, 1982-, Konstantin MadestovichКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Инженерная школа природных ресурсов, Отделение нефтегазового делаЯзык: английский.Страна: .Резюме или реферат: Carbon dioxide (CO2) in enhanced oil recovery (EOR) has received significant attention due to its potential to increase ultimate recovery from mature conventional oil reserves. CO2-enhanced oil recovery (CO2-EOR) helps to reduce global greenhouse gas emissions by sequestering CO2 in subterranean geological formations. CO2-EOR has been exploited commercially over recent decades to improve recovery from light and medium gravity oil reservoirs in their later stages of development. CO2 tends to be used in either continuous flooding or alternated flooding with water injection. Problems can arise in CO2-flooded heterogeneous reservoirs, due to differential mobility of the fluid phases, causing viscous fingering and early CO2 penetration to develop. This study reviews the advantages and disadvantages of the techniques used for injecting CO2 into subsurface reservoirs and the methods adopted in attempts to control CO2 mobility. Recently developed methods are leading to improvements in CO2-EOR results. In particular, the involvement of nanoparticles combined with surfactants can act to stabilize CO2 foam, making it more effective in the reservoir from an EOR perspective. The potential to improve CO2 flooding techniques and the challenges and uncertainties associated with achieving that objective are addressed..Примечания о наличии в документе библиографии/указателя: [References: 31 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | нефтеотдача | углекислый газ | наночастицы | углерод Ресурсы он-лайн:Щелкните здесь для доступа в онлайн | Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 31 tit.]

Carbon dioxide (CO2) in enhanced oil recovery (EOR) has received significant attention due to its potential to increase ultimate recovery from mature conventional oil reserves. CO2-enhanced oil recovery (CO2-EOR) helps to reduce global greenhouse gas emissions by sequestering CO2 in subterranean geological formations. CO2-EOR has been exploited commercially over recent decades to improve recovery from light and medium gravity oil reservoirs in their later stages of development. CO2 tends to be used in either continuous flooding or alternated flooding with water injection. Problems can arise in CO2-flooded heterogeneous reservoirs, due to differential mobility of the fluid phases, causing viscous fingering and early CO2 penetration to develop. This study reviews the advantages and disadvantages of the techniques used for injecting CO2 into subsurface reservoirs and the methods adopted in attempts to control CO2 mobility. Recently developed methods are leading to improvements in CO2-EOR results. In particular, the involvement of nanoparticles combined with surfactants can act to stabilize CO2 foam, making it more effective in the reservoir from an EOR perspective. The potential to improve CO2 flooding techniques and the challenges and uncertainties associated with achieving that objective are addressed.

Для данного заглавия нет комментариев.

оставить комментарий.