Family of Asymptotic Solutions to the Two-Dimensional Kinetic Equation with a Nonlocal Cubic Nonlinearity / A. V. Shapovalov, A. E. Kulagin, S. A. Sinyukov

Уровень набора: SymmetryОсновной Автор-лицо: Shapovalov, A. V., Aleksandr VasiljevichАльтернативный автор-лицо: Kulagin, A. E., mathematician, laboratory assistant of Tomsk Polytechnic University, 1992-, Anton Evgenievich;Sinyukov, S. A., Sergey AleksandrovichКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Инженерная школа неразрушающего контроля и безопасности, Отделение электронной инженерииЯзык: английский.Страна: .Резюме или реферат: We apply the original semiclassical approach to the kinetic ionization equation with the nonlocal cubic nonlinearity in order to construct the family of its asymptotic solutions. The approach proposed relies on an auxiliary dynamical system of moments of the desired solution to the kinetic equation and the associated linear partial differential equation. The family of asymptotic solutions to the kinetic equation is constructed using the symmetry operators acting on functions concentrated in a neighborhood of a point determined by the dynamical system. Based on these solutions, we introduce the nonlinear superposition principle for the nonlinear kinetic equation. Our formalism based on the Maslov germ method is applied to the Cauchy problem for the specific two-dimensional kinetic equation. The evolution of the ion distribution in the kinetically enhanced metal vapor active medium is obtained as the nonlinear superposition using the numerical-analytical calculations..Примечания о наличии в документе библиографии/указателя: [References: 29 tit.].Тематика: электронный ресурс | труды учёных ТПУ | kinetic model | symmetry operators | Maslov germ | nonlinear superposition principle | dense plasma | active media | semiclassical approximation | WKB–Maslov method | кинетические модели | плотная плазма | квазиклассическое приближение | ионизация | кинетические уравнения | метод Маслова Ресурсы он-лайн:Щелкните здесь для доступа в онлайн | Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 29 tit.]

We apply the original semiclassical approach to the kinetic ionization equation with the nonlocal cubic nonlinearity in order to construct the family of its asymptotic solutions. The approach proposed relies on an auxiliary dynamical system of moments of the desired solution to the kinetic equation and the associated linear partial differential equation. The family of asymptotic solutions to the kinetic equation is constructed using the symmetry operators acting on functions concentrated in a neighborhood of a point determined by the dynamical system. Based on these solutions, we introduce the nonlinear superposition principle for the nonlinear kinetic equation. Our formalism based on the Maslov germ method is applied to the Cauchy problem for the specific two-dimensional kinetic equation. The evolution of the ion distribution in the kinetically enhanced metal vapor active medium is obtained as the nonlinear superposition using the numerical-analytical calculations.

Российский фонд фундаментальных исследований 19-41-700004

Для данного заглавия нет комментариев.

оставить комментарий.