Hybrid Simulation of Turbulent Natural Convection in an Enclosure with Thermally-Conductive Walls / A. E. Nee, A. J. Chamkha
Уровень набора: International Journal of Applied MechanicsЯзык: английский.Страна: .Резюме или реферат: This paper analyzes the interaction of high Rayleigh number flow with conjugate heat transfer. The two-relaxation time lattice Boltzmann is used as a turbulent buoyancy-driven flow solver whereas the implicit finite difference technique is applied as a heat transfer solver. An in-house numerical code is developed and successfully validated on typical CFD problems. The impact of the Biot number, heat diffusivity ratio and the Rayleigh number on turbulent fluid flow and heat transfer patterns is studied. It is revealed that the thermally-conductive walls of finite thickness reduce the heat transfer rate. The temperature of the cooled wall slightly depends on the value of the buoyancy force. The heat diffusivity ratio has a significant effect on thermal and flow behavior. The Biot number significantly affects the mean Nusselt number at the right solid–fluid interface whereas the mean Nusselt number at the left interface is almost insensible to the Biot number variation..Тематика: электронный ресурс | труды учёных ТПУ | hybrid LBM | turbulent natural convection | FDM | conjugate heat transfer | конвекция | сопряженный теплообмен Ресурсы он-лайн:Щелкните здесь для доступа в онлайн | Щелкните здесь для доступа в онлайнTitle screen
This paper analyzes the interaction of high Rayleigh number flow with conjugate heat transfer. The two-relaxation time lattice Boltzmann is used as a turbulent buoyancy-driven flow solver whereas the implicit finite difference technique is applied as a heat transfer solver. An in-house numerical code is developed and successfully validated on typical CFD problems. The impact of the Biot number, heat diffusivity ratio and the Rayleigh number on turbulent fluid flow and heat transfer patterns is studied. It is revealed that the thermally-conductive walls of finite thickness reduce the heat transfer rate. The temperature of the cooled wall slightly depends on the value of the buoyancy force. The heat diffusivity ratio has a significant effect on thermal and flow behavior. The Biot number significantly affects the mean Nusselt number at the right solid–fluid interface whereas the mean Nusselt number at the left interface is almost insensible to the Biot number variation.
Для данного заглавия нет комментариев.