Ignition of High Energy Material Containing Ultradispersed Al/B Powder = Зажигание высокоэнергетического материала, содержащего ультрадисперсный порошок AL/B / A. G. Korotkikh, I. V. Sorokin, V. A. Arkhipov

Уровень набора: Russian Journal of Physical Chemistry BОсновной Автор-лицо: Korotkikh, A. G., specialist in the field of power engineering, Professor of Tomsk Polytechnic University, Doctor of Physical and Mathematical Sciences, 1976-, Aleksandr GennadievichАльтернативный автор-лицо: Sorokin, I. V., Specialist in the field of heat and power engineering, Engineer of Tomsk Polytechnic University, 1992-, Ivan Viktorovich;Arkhipov, V. A., специалист в области теплоэнергетики, профессор Томского политехнического университета, доктор физико-математических наук, 1944-, Vladimir AfanasjevichКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Инженерная школа энергетики, Научно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова)Язык: английский.Страна: .Резюме или реферат: This paper presents the characteristics of the oxidation of ultrafine aluminum powders of the Alex grade and a mechanical mixture containing Alex/B boron powder. The features of the ignition of high-energy materials containing ammonium perchlorate, butadiene rubber, and ultrafine metal powders, when heated by a radiant heat flux, are studied. It is established by thermal analysis that the rate of change in the mass of the sample and the total specific heat release during the oxidation of powdered aluminum diboride (Alex/B) in air significantly exceed the values of aluminum powder (Alex). Measurements on an experimental setup based on continuous CO2-laser and high-speed visualization of the stages of the response and development of flame processes show that the use of Alex/B in the composition of a high-energy material does not lead to a significant change in the time characteristics of ignition under the same heating conditions. At the same time, the intensity of the outflow of gaseous decomposition products with metal particles from the combustion surface of the fuel composition increases due to an increase in the heat flux in the zone of the gas-phase reactions and on the surface of the reactive fuel layer during the oxidation of aluminum and boron particles..Примечания о наличии в документе библиографии/указателя: [References: 22 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | high-energy material | ultrafine aluminum | boron | ignition delay time | ignition temperature | decomposition | oxidation Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 22 tit.]

This paper presents the characteristics of the oxidation of ultrafine aluminum powders of the Alex grade and a mechanical mixture containing Alex/B boron powder. The features of the ignition of high-energy materials containing ammonium perchlorate, butadiene rubber, and ultrafine metal powders, when heated by a radiant heat flux, are studied. It is established by thermal analysis that the rate of change in the mass of the sample and the total specific heat release during the oxidation of powdered aluminum diboride (Alex/B) in air significantly exceed the values of aluminum powder (Alex). Measurements on an experimental setup based on continuous CO2-laser and high-speed visualization of the stages of the response and development of flame processes show that the use of Alex/B in the composition of a high-energy material does not lead to a significant change in the time characteristics of ignition under the same heating conditions. At the same time, the intensity of the outflow of gaseous decomposition products with metal particles from the combustion surface of the fuel composition increases due to an increase in the heat flux in the zone of the gas-phase reactions and on the surface of the reactive fuel layer during the oxidation of aluminum and boron particles.

Для данного заглавия нет комментариев.

оставить комментарий.