Electrospun polycaprolactone scaffolds loaded with a 1,4-naphthoquinone derivative for anticancer therapy / N. V. Danilenko, E. N. Bolbasov, A. I. Khlebnikov [et al.]
Уровень набора: Materials LettersЯзык: английский.Страна: .Резюме или реферат: The development of bioresorbable scaffolds with anticancer properties for use in tissue repair after surgical resection of tumors is important. Naphthoquinones with high anticancer activity are promising compounds for creating anticancer scaffolds. Thus, electrospun polycaprolactone (PCL) scaffolds embedded with different concentrations of 2-chloro-3-((4-hydroxyphenyl)amino)-1,4-naphthoquinonone (NQCP4) were fabricated without changing the technological parameters of scaffold formation. Loading NQCP4 into the spinning solution at concentrations of 10 to 50 ?g/mL did not cause changes in the structure, strength, or wettability of the scaffold. However, increasing NQCP4 concentrations in the spinning solution enhanced anticancer properties of the scaffolds in vitro. Thus, the use of NQCP4 makes it possible to obtain promising PCL scaffolds for tissue repair, which are in demand for surgical resection of malignant neoplasms, while still maintaining the technological advantages of “classical” electrospinning technology..Примечания о наличии в документе библиографии/указателя: [References: 9 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | 1,4-Naphthoquinone derivative | electrospun scaffold | polycaprolactone | anticancer Ресурсы он-лайн:Щелкните здесь для доступа в онлайнTitle screen
[References: 9 tit.]
The development of bioresorbable scaffolds with anticancer properties for use in tissue repair after surgical resection of tumors is important. Naphthoquinones with high anticancer activity are promising compounds for creating anticancer scaffolds. Thus, electrospun polycaprolactone (PCL) scaffolds embedded with different concentrations of 2-chloro-3-((4-hydroxyphenyl)amino)-1,4-naphthoquinonone (NQCP4) were fabricated without changing the technological parameters of scaffold formation. Loading NQCP4 into the spinning solution at concentrations of 10 to 50 ?g/mL did not cause changes in the structure, strength, or wettability of the scaffold. However, increasing NQCP4 concentrations in the spinning solution enhanced anticancer properties of the scaffolds in vitro. Thus, the use of NQCP4 makes it possible to obtain promising PCL scaffolds for tissue repair, which are in demand for surgical resection of malignant neoplasms, while still maintaining the technological advantages of “classical” electrospinning technology.
Для данного заглавия нет комментариев.