Rankings as ordinal scale measurement results / S. V. Muravyov (Murav’ev)

Уровень набора: Metrology and Measurement SystemsОсновной Автор-лицо: Muravyov (Murav’ev), S. V., specialist in the field of control and measurement equipment, Professor of Tomsk Polytechnic University,Doctor of technical sciences, 1954-, Sergey VasilyevichЯзык: английский.Страна: .Резюме или реферат: Rankings (or preference relations, or weak orders) are sometimes considered to be non-empirical, nonobjective, low-informative and, in principle, are not worthy to be titled measurements. A purpose of the paper is to demonstrate that the measurement result on the ordinal scale should be an entire (consensus) ranking of n objects ranked by m properties (or experts, or voters) in order of preference and the ranking is one of points of the weak orders space. The consensus relation that would give an integrative characterization of the initial rankings is one of strict (linear) order relations, which, in some sense, is nearest to every of the initial rankings. A recursive branch and bound measurement procedure for finding the consensus relation is described. An approach to consensus relation uncertainty assessment is discussed..Примечания о наличии в документе библиографии/указателя: [References: 13 tit.].Тематика: труды учёных ТПУ | электронный ресурс | ordinal scale | weak order | consensus relation | recursive algorithm | порядковые шкалы | рекурсивные алгоритмы Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 13 tit.]

Rankings (or preference relations, or weak orders) are sometimes considered to be non-empirical, nonobjective, low-informative and, in principle, are not worthy to be titled measurements. A purpose of the paper is to demonstrate that the measurement result on the ordinal scale should be an entire (consensus) ranking of n objects ranked by m properties (or experts, or voters) in order of preference and the ranking is one of points of the weak orders space. The consensus relation that would give an integrative characterization of the initial rankings is one of strict (linear) order relations, which, in some sense, is nearest to every of the initial rankings. A recursive branch and bound measurement procedure for finding the consensus relation is described. An approach to consensus relation uncertainty assessment is discussed.

Для данного заглавия нет комментариев.

оставить комментарий.