Generalised point vortices on a plane / A. V. Galajinsky
Уровень набора: Physics Letters BЯзык: английский.Резюме или реферат: A three-vortex system on a plane is known to be minimally superintegrable in the Liouville sense. In this work, integrable generalisations of the three-vortex planar model, which involve root vectors of simple Lie algebras, are proposed. It is shown that a generalised system, which is governed by a positive definite Hamiltonian, admits a natural integrable extension by spin degrees of freedom. It is emphasised that the n-vortex planar model and plenty of its generalisations enjoy the nonrelativistic scale invariance, which gives room for possible holographic applications..Примечания о наличии в документе библиографии/указателя: [References.: 17 tit.].Тематика: электронный ресурс | труды учёных ТПУ | point vortices | integrable systems | scale symmetry | supersymmetry | точечные вихри | интегрируемые системы | масштабность | симметрия | суперсимметрия Ресурсы он-лайн:Щелкните здесь для доступа в онлайн | Щелкните здесь для доступа в онлайнНет реальных экземпляров для этой записи
Title screen
[References.: 17 tit.]
A three-vortex system on a plane is known to be minimally superintegrable in the Liouville sense. In this work, integrable generalisations of the three-vortex planar model, which involve root vectors of simple Lie algebras, are proposed. It is shown that a generalised system, which is governed by a positive definite Hamiltonian, admits a natural integrable extension by spin degrees of freedom. It is emphasised that the n-vortex planar model and plenty of its generalisations enjoy the nonrelativistic scale invariance, which gives room for possible holographic applications.
Для данного заглавия нет комментариев.
Личный кабинет оставить комментарий.