Static models for implementing photovoltaic panels characteristics under various environmental conditions using improved gradient-based optimizer / A. M. Mokhamed Elsaed (Mohamed Abd Elaziz), A. Rolla, A. Iman [et al.]

Уровень набора: Sustainable Energy Technologies and AssessmentsАльтернативный автор-лицо: Mokhamed Elsaed (Mohamed Abd Elaziz), A. M., Specialist in the field of informatics and computer technology, Professor of Tomsk Polytechnic University, 1987-, Akhmed Mokhamed;Rolla, A., Almodfer;Iman, A., Ahmadianfar;Ibrahim, A. I., Anwar Ibrahim;Mohammed, M., Mudhsh;Laith, A., Abualigah;Songfeng Lu;Ahmed, A., Abd El-Latif;Yousri, D., DaliaКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Инженерная школа информационных технологий и робототехники, Отделение информационных технологийЯзык: английский.Резюме или реферат: An accurate definition of the photovoltaic (PV) models is an essential task to emulate and understand the physical behavior of the PV cell/panels. The highly used PV models are the static equivalent circuits, including single and double diode models. However, the accurate definition of the static models is mainly based on their estimated parameters. Proposing a reliable Optimization-based approached is a challenging aim. So, this paper proposes a novel and efficient optimizer to identify PV single and double diode models' parameters for several PV modules using different sets of experimentally measured data. The developed method depends on improving the gradient-based optimization algorithm (GBO) using a new crossover operator to enhances agents' diversity. Furthermore, a modified local escaping operator is applied to improve exploitation of GBO. The performance of the improvement GBO (IGBO) is evaluated using different experimental datasets for numerous PV modules under several operating conditions of temperature and radiation. The efficiency of IGBO is validated through a massive comparison with a set of recent state-of-the-art techniques. Reported results, fitting curves, and convergence curves provide proof for the efficiency of IGBO in providing high qualifies results with remarkable convergence speed..Примечания о наличии в документе библиографии/указателя: [References: 72 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | solar energy technology | gradient-based optimizer | parameters estimation | single diode model | two diode model | солнечная энергия | оптимизаторы | градиент Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 72 tit.]

An accurate definition of the photovoltaic (PV) models is an essential task to emulate and understand the physical behavior of the PV cell/panels. The highly used PV models are the static equivalent circuits, including single and double diode models. However, the accurate definition of the static models is mainly based on their estimated parameters. Proposing a reliable Optimization-based approached is a challenging aim. So, this paper proposes a novel and efficient optimizer to identify PV single and double diode models' parameters for several PV modules using different sets of experimentally measured data. The developed method depends on improving the gradient-based optimization algorithm (GBO) using a new crossover operator to enhances agents' diversity. Furthermore, a modified local escaping operator is applied to improve exploitation of GBO. The performance of the improvement GBO (IGBO) is evaluated using different experimental datasets for numerous PV modules under several operating conditions of temperature and radiation. The efficiency of IGBO is validated through a massive comparison with a set of recent state-of-the-art techniques. Reported results, fitting curves, and convergence curves provide proof for the efficiency of IGBO in providing high qualifies results with remarkable convergence speed.

Для данного заглавия нет комментариев.

оставить комментарий.