Chronic toxicity of shrimp feed added with silver nanoparticles (Argovit-4®) in Litopenaeus vannamei and immune response to white spot syndrome virus infection / C. R. Romo-Quinonez, P. Alvarez-Ruiz, C. H. Mejia-Ruiz [et al.]

Уровень набора: PeerJАльтернативный автор-лицо: Romo-Quinonez, C. R., Carlos;Alvarez-Ruiz, P., Pindaro;Mejia-Ruiz, C. H.;Bogdanchikova, N., Nina;Pestryakov, A. N., Chemist, Professor of Tomsk Polytechnic University, Doctor of Chemical Science, 1963-, Aleksey Nikolaevich;Gamez-Jimenez, C., Carina;Valenzuela-Quinonez, W., Wenceslao;Montoya-Mejia, M., Magnolia;Perez, E. N., Eusebio NavaКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Исследовательская школа химических и биомедицинских технологий, (2017- )Язык: английский.Страна: .Резюме или реферат: In recent years, the application of silver nanoparticles (AgNPs) as antibacterial compounds has been widely used in human and veterinary medicine. In this work, we investigated the effects of AgNPs (Argovit-4®) as feed additives (feed-AgNPs) on shrimp (Litopenaeus vannamei) using three different methods: 1) chronic toxicity after 28 days of feeding, 2) Effects against white spot syndrome virus (WSSV) challenged by oral route, and 3) transcriptional responses of immune-related genes (PAP, ProPO, CTL-3, Crustin, PEN3, and PEN4) following WSSV infection. The results showed that the feed-AgNPs did not interfere with the growth and survival of shrimp. Also, mild lesions in the hepatopancreas were recorded, proportional to the frequency of the feed-AgNP supply. Challenge test versus WSSV showed that feeding every 7 days with feed-AgNPs reduced mortality, reaching a survival rate of 53%, compared to the survival rates observed in groups fed every 4 days, daily and control groups of feed-AgNPs for the 30%, 10%, and 7% groups, respectively. Feed-AgNPs negatively regulated the expression of PAP, ProPO, and Crustin genes after 28 days of treatment and altered the transcriptional responses of PAP, ProPO, CTL-3, and Crustin after WSSV exposure. The results showed that weekly feeding-AgNPs could partially prevent WSSV infection in shrimp culture. However, whether or not transcriptional responses against pathogens are advantageous remains to be elucidated..Тематика: электронный ресурс | труды учёных ТПУ | silver nanoparticles | shrimp | aquaculture | chronic toxicity | WSSV | AgNP | argovit | litopenaeus vannamei | silver fed | white spot syndrome virus | наночастицы | интоксикации Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

In recent years, the application of silver nanoparticles (AgNPs) as antibacterial compounds has been widely used in human and veterinary medicine. In this work, we investigated the effects of AgNPs (Argovit-4®) as feed additives (feed-AgNPs) on shrimp (Litopenaeus vannamei) using three different methods: 1) chronic toxicity after 28 days of feeding, 2) Effects against white spot syndrome virus (WSSV) challenged by oral route, and 3) transcriptional responses of immune-related genes (PAP, ProPO, CTL-3, Crustin, PEN3, and PEN4) following WSSV infection. The results showed that the feed-AgNPs did not interfere with the growth and survival of shrimp. Also, mild lesions in the hepatopancreas were recorded, proportional to the frequency of the feed-AgNP supply. Challenge test versus WSSV showed that feeding every 7 days with feed-AgNPs reduced mortality, reaching a survival rate of 53%, compared to the survival rates observed in groups fed every 4 days, daily and control groups of feed-AgNPs for the 30%, 10%, and 7% groups, respectively. Feed-AgNPs negatively regulated the expression of PAP, ProPO, and Crustin genes after 28 days of treatment and altered the transcriptional responses of PAP, ProPO, CTL-3, and Crustin after WSSV exposure. The results showed that weekly feeding-AgNPs could partially prevent WSSV infection in shrimp culture. However, whether or not transcriptional responses against pathogens are advantageous remains to be elucidated.

Для данного заглавия нет комментариев.

оставить комментарий.