Automated detection and characterization of defects in composite-metal structures by using active infrared thermography / A. O. Chulkov, V. P. Vavilov, B. I. Shagdyrov, D. Kladov

Уровень набора: Journal of Nondestructive EvaluationАльтернативный автор-лицо: Chulkov, A. O., specialist in the field of non-destructive testing, Deputy Director for Scientific and Educational Activities; acting manager; Senior Researcher, Tomsk Polytechnic University, Candidate of Technical Sciences, 1989-, Arseniy Olegovich;Vavilov, V. P., Specialist in the field of dosimetry and methodology of nondestructive testing (NDT), Doctor of technical sciences (DSc), Professor of Tomsk Polytechnic University (TPU), 1949-, Vladimir Platonovich;Shagdyrov, B. I., specialist in the field of non-destructive testing, engineer of Tomsk Polytechnic University, 1995-, Bator Ilyich;Kladov, D., specialist in the field of non-destructive testing, engineer of Tomsk Polytechnic University, 1996-, DmitryКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Инженерная школа неразрушающего контроля и безопасности, Центр промышленной томографии, Научно-производственная лаборатория "Тепловой контроль"Язык: английский.Страна: .Резюме или реферат: Several composite-metal samples with artificial defects of varying size and depth were experimentally investigated to demonstrate effectiveness of using a line scan thermographic nondestructive testing in combination with a neural network in the automated procedure of defect detection and characterization. The proposed data processing algorithm allowed defect thermal characterization with a practically accepted accuracy up to 16% and 51% by defect depth and thickness respectively. Characterization results were presented as distributions of defect depth and thickness correspondingly called depthgram and thicknessgram. For training a neural network, it was suggested to prepare input data in the form of non-stationary temperature profiles processed by using the thermographic signal reconstruction method..Примечания о наличии в документе библиографии/указателя: [References: 21 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | thermal NDT | defect characterization | composite-metal structure | neural network | line scan thermography Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 21 tit.]

Several composite-metal samples with artificial defects of varying size and depth were experimentally investigated to demonstrate effectiveness of using a line scan thermographic nondestructive testing in combination with a neural network in the automated procedure of defect detection and characterization. The proposed data processing algorithm allowed defect thermal characterization with a practically accepted accuracy up to 16% and 51% by defect depth and thickness respectively. Characterization results were presented as distributions of defect depth and thickness correspondingly called depthgram and thicknessgram. For training a neural network, it was suggested to prepare input data in the form of non-stationary temperature profiles processed by using the thermographic signal reconstruction method.

Для данного заглавия нет комментариев.

оставить комментарий.