Machine-learning models to predict hydrogen uptake of porous carbon materials from influential variables / Sh. Davoodi, Vo Thanh Hung, D. A. Wood [et al.]

Уровень набора: Separation and Purification TechnologyАльтернативный автор-лицо: Davoodi, Sh., specialist in the field of petroleum engineering, Research Engineer of Tomsk Polytechnic University, 1990-, Shadfar;Vo Thanh Hung;Wood, D. A., David;Mekhrad, M., Mokhammad;Al-Shargabi, M., specialist in the field of petroleum engineering, Engineer of Tomsk Polytechnic University, 1993-, Mohammed;Rukavishnikov, V. S., specialist in the field of oil and gas business, Engineer of Tomsk Polytechnic University, 1984-, Valery SergeevichКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Инженерная школа природных ресурсов, Отделение нефтегазового делаЯзык: английский.Страна: .Резюме или реферат: Hydrogen (H2) absorption percentage by porous carbon media (PCM) is important for identifying efficient H2 storage media. PCM with H2-uptakes of greater than 5 wt% are urgently required to improve the performance of H2 fuel tanks for use in fuel-cell-powered transportation vehicles. Machine-learning (ML) methods can provide effective tools for predicting PCM H2-uptakes from influential variables determined by experiments performed on a wide range of PCM. This study evaluates the PCM-H2-uptake prediction performance of four well-established ML models: generalized-regression neural network (GRNN), Least-squares-support-vector machine (LSSVM), adaptive-neuro-fuzzy-inference system (ANFIS), and extreme-learning machine (ELM). A 2072-record database, compiled from literature, comprising eleven independent variables and PCM H2-uptake (dependent variable covering a range of 0 to 8.38 wt%) was evaluated by the four ML models. Each model was trained and validated using 10-fold cross-validation. The LSSVM generates the best PCM-H2-uptake prediction performance when applied to an independent testing subset of data records, achieving a root mean squared error of just 0.2407 wt%. Feature importance sensitivity analysis identifies pressure as the most influential of the independent variable considered. Leverage analysis identified that 96.53% of the data records of the compiled database, when predicted by the LSSVM model, resided within the applicable domain with only seventy-two data records considered as suspected outliers. These results indicate that the LSSVM model developed is highly generalizable for the purpose of predicting PCM H2-uptake from the influential variables..Примечания о наличии в документе библиографии/указателя: [References: 136 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 136 tit.]

Hydrogen (H2) absorption percentage by porous carbon media (PCM) is important for identifying efficient H2 storage media. PCM with H2-uptakes of greater than 5 wt% are urgently required to improve the performance of H2 fuel tanks for use in fuel-cell-powered transportation vehicles. Machine-learning (ML) methods can provide effective tools for predicting PCM H2-uptakes from influential variables determined by experiments performed on a wide range of PCM. This study evaluates the PCM-H2-uptake prediction performance of four well-established ML models: generalized-regression neural network (GRNN), Least-squares-support-vector machine (LSSVM), adaptive-neuro-fuzzy-inference system (ANFIS), and extreme-learning machine (ELM). A 2072-record database, compiled from literature, comprising eleven independent variables and PCM H2-uptake (dependent variable covering a range of 0 to 8.38 wt%) was evaluated by the four ML models. Each model was trained and validated using 10-fold cross-validation. The LSSVM generates the best PCM-H2-uptake prediction performance when applied to an independent testing subset of data records, achieving a root mean squared error of just 0.2407 wt%. Feature importance sensitivity analysis identifies pressure as the most influential of the independent variable considered. Leverage analysis identified that 96.53% of the data records of the compiled database, when predicted by the LSSVM model, resided within the applicable domain with only seventy-two data records considered as suspected outliers. These results indicate that the LSSVM model developed is highly generalizable for the purpose of predicting PCM H2-uptake from the influential variables.

Для данного заглавия нет комментариев.

оставить комментарий.