The depth of the soil's horizons profile has an effect on the human health impact score / A. Belyanovskaya, D. A. Vorobjyova, N. V. Guseva, B. Laratte
Уровень набора: Journal of Cleaner ProductionЯзык: английский.Страна: .Резюме или реферат: The chemical composition of soils reflects the degree of industrial exposure. Cu and Ni concentrations in soils of the «Severonickel » plant vicinity are higher than remote ones. In the impact area, the mean concentration of the heavy metals in the subsoils is 55 [ppm] for Ni and 33 [ppm] for Cu. Soils’ chemical composition varies over different mineral horizons. The subsoil layer is the main accumulator of chemical elements, including pollutants. Erosion of the surface layer and technogenic disturbance of the soil profile can lead to subsoil spreading and a significant increase in the human health Impact Score. At the same time, the default IS calculation is focused on the 0.1 [m] depth for all zones. In the paper two factors are considered in the impact modeling modification. The human health Impact Score is calculated specifically for each genetic soil layer with the respective depth of the profile (from 0.05 [m] to 0.2 [m]) and for soils from background and impact areas. The discrepancies between default and modified Impact Scores are observed. In the Impact area, the highest IShum for Ni is 60, for Cu is 5.6 [DALY]; in the Background area, it is 11 and 3.1 [DALY] respectively. The importance of using the regionally modified values in population health impact monitoring is highlighted..Примечания о наличии в документе библиографии/указателя: [References: 77 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ Ресурсы он-лайн:Щелкните здесь для доступа в онлайнTitle screen
[References: 77 tit.]
The chemical composition of soils reflects the degree of industrial exposure. Cu and Ni concentrations in soils of the «Severonickel » plant vicinity are higher than remote ones. In the impact area, the mean concentration of the heavy metals in the subsoils is 55 [ppm] for Ni and 33 [ppm] for Cu. Soils’ chemical composition varies over different mineral horizons. The subsoil layer is the main accumulator of chemical elements, including pollutants. Erosion of the surface layer and technogenic disturbance of the soil profile can lead to subsoil spreading and a significant increase in the human health Impact Score. At the same time, the default IS calculation is focused on the 0.1 [m] depth for all zones. In the paper two factors are considered in the impact modeling modification. The human health Impact Score is calculated specifically for each genetic soil layer with the respective depth of the profile (from 0.05 [m] to 0.2 [m]) and for soils from background and impact areas. The discrepancies between default and modified Impact Scores are observed. In the Impact area, the highest IShum for Ni is 60, for Cu is 5.6 [DALY]; in the Background area, it is 11 and 3.1 [DALY] respectively. The importance of using the regionally modified values in population health impact monitoring is highlighted.
Для данного заглавия нет комментариев.