On Accuracy Order of Fourier Coefficients Computation for Periodic Signal Processing Models / I. V. Korytov, S. E. Golosov

Уровень набора: (RuTPU)RU\TPU\network\2008, IOP Conference Series: Materials Science and EngineeringОсновной Автор-лицо: Korytov, I. V., mathematician, senior lecturer of Tomsk Polytechnic University, candidate of physical and mathematical sciences, 1961-, Igor VitalievichАльтернативный автор-лицо: Golosov, S. E.Коллективный автор (вторичный): Национальный исследовательский Томский политехнический университет (ТПУ), Физико-технический институт (ФТИ), Кафедра высшей математики и математической физики (ВММФ)Язык: английский.Страна: .Резюме или реферат: The article is devoted to construction piecewise constant functions for modelling periodic signal. The aim of the paper is to suggest a way to avoid discontinuity at points where waveform values are obtained. One solution is to introduce shifted step function whose middle points within its partial intervals coincide with points of observation. This means that large oscillations of Fourier partial sums move to new jump discontinuities where waveform values are not obtained. Furthermore, any step function chosen to model periodic continuous waveform determines a way to calculate Fourier coefficients. In this case, the technique is certainly a weighted rectangular quadrature rule. Here, the weight is either unit or trigonometric. Another effect of the solution consists in following. The shifted function leads to application midpoint quadrature rules for computing Fourier coefficients. As a result the formula for zero coefficient transforms into trapezoid rule. In the same time, the formulas for other coefficients remain of rectangular type..Примечания о наличии в документе библиографии/указателя: [References: 9 tit.].Тематика: электронный ресурс | труды учёных ТПУ | коэффициент Фурье | обработка | сигналы | периодические сигналы Ресурсы он-лайн:Щелкните здесь для доступа в онлайн | Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 9 tit.]

The article is devoted to construction piecewise constant functions for modelling periodic signal. The aim of the paper is to suggest a way to avoid discontinuity at points where waveform values are obtained. One solution is to introduce shifted step function whose middle points within its partial intervals coincide with points of observation. This means that large oscillations of Fourier partial sums move to new jump discontinuities where waveform values are not obtained. Furthermore, any step function chosen to model periodic continuous waveform determines a way to calculate Fourier coefficients. In this case, the technique is certainly a weighted rectangular quadrature rule. Here, the weight is either unit or trigonometric. Another effect of the solution consists in following. The shifted function leads to application midpoint quadrature rules for computing Fourier coefficients. As a result the formula for zero coefficient transforms into trapezoid rule. In the same time, the formulas for other coefficients remain of rectangular type.

Для данного заглавия нет комментариев.

оставить комментарий.