Space quasiconformal composition operators with applications to Neumann eigenvalues / V. M. Goldshtein, R. Hurri-Syrjanen, V. A. Pchelintsev, A. D. Ukhlov
Уровень набора: Analysis and Mathematical PhysicsЯзык: английский.Резюме или реферат: In this article we obtain estimates of Neumann eigenvalues of p-Laplace operators in a large class of space domains satisfying quasihyperbolic boundary conditions. The suggested method is based on composition operators generated by quasiconformal mappings and their applications to Sobolev–Poincarй-inequalities. By using a sharp version of the reverse Hцlder inequality we refine our estimates for quasi-balls, that is, images of balls under quasiconformal mappings of the whole space..Примечания о наличии в документе библиографии/указателя: [References: 37 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | elliptic equations | Sobolev spaces | эллиптические уравнения | пространство Соболева | квазиконформные отображения | quasiconformal mappings Ресурсы он-лайн:Щелкните здесь для доступа в онлайнНет реальных экземпляров для этой записи
Title screen
[References: 37 tit.]
In this article we obtain estimates of Neumann eigenvalues of p-Laplace operators in a large class of space domains satisfying quasihyperbolic boundary conditions. The suggested method is based on composition operators generated by quasiconformal mappings and their applications to Sobolev–Poincarй-inequalities. By using a sharp version of the reverse Hцlder inequality we refine our estimates for quasi-balls, that is, images of balls under quasiconformal mappings of the whole space.
Для данного заглавия нет комментариев.
Личный кабинет оставить комментарий.