Research of the Additional Losses Occurring in Optical Fiber at its Multiple Bends in the Range Waves 1310nm, 1550nm and 1625nm Long / A. V. Yurchenko, N. I. Gorlov, A. D. Alkina [et al.]
Уровень набора: (RuTPU)RU\TPU\network\3526, Journal of Physics: Conference SeriesЯзык: английский.Резюме или реферат: Article is devoted to research of the additional losses occurring in the optical fiber at its multiple bends in the range waves of 1310 nanometers, 1550 nanometers and 1625 nanometers long. Article is directed on creation of the external factors methods which allow to estimate and eliminate negative influence. The automated way of calculation of losses at a bend is developed. Results of scientific researches are used by engineers of "Kazaktelekom" AS for practical definition of losses service conditions. For modeling the Wolfram|Alpha environment - the knowledge base and a set of computing algorithms was chosen. The greatest losses are noted on wavelength 1310nm and 1625nm. All dependences are nonlinear. Losses with each following excess are multiplicative..Примечания о наличии в документе библиографии/указателя: [References: 5 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | потери | оптические волокна | изгибы | вычислительные алгоритмы | волны Ресурсы он-лайн:Щелкните здесь для доступа в онлайн | Щелкните здесь для доступа в онлайнTitle screen
[References: 5 tit.]
Article is devoted to research of the additional losses occurring in the optical fiber at its multiple bends in the range waves of 1310 nanometers, 1550 nanometers and 1625 nanometers long. Article is directed on creation of the external factors methods which allow to estimate and eliminate negative influence. The automated way of calculation of losses at a bend is developed. Results of scientific researches are used by engineers of "Kazaktelekom" AS for practical definition of losses service conditions. For modeling the Wolfram|Alpha environment - the knowledge base and a set of computing algorithms was chosen. The greatest losses are noted on wavelength 1310nm and 1625nm. All dependences are nonlinear. Losses with each following excess are multiplicative.
Для данного заглавия нет комментариев.