Thermal conductivity and dynamic viscosity modeling of Fe2O3/water nanofluid by applying various connectionist approaches / H. A. Mohammad, T. Afshin, S. Parinaz [et al.]

Уровень набора: Numerical Heat Transfer, Part A: ApplicationsАльтернативный автор-лицо: Mohammad, H. A., Hossein Ahmadi;Afshin, T., Tatar;Parinaz, S., Seifaddini;Mahyar, Gh., Ghazvini;Roghayeh, Gh., Ghasempour;Sheremet, M. A., physicist, Associate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical sciences, 1983-, Mikhail AleksandrovichКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Инженерная школа энергетики, Научно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова)Язык: английский.Резюме или реферат: Thermal conductivity and dynamic viscosity play key role in heat transfer capacity of nanofluids. In the present study, thermal conductivity and dynamic viscosity of Fe2O3/water are modeled by applying various artificial neural network algorithms. The applied algorithms are MLP, GA-RBF, LSSVM, and CHPSO ANFIS algorithms. The data for modeling procedure are extracted from several experimental studies. Obtained results by the different algorithms are compared and it was concluded that the highest R-squared values belonged to GA-RBF algorithm which were equal to 0.9962 and 0.9982 for thermal conductivity ratio and dynamic viscosity, respectively..Примечания о наличии в документе библиографии/указателя: [References: 80 tit.].Тематика: электронный ресурс | труды учёных ТПУ Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 80 tit.]

Thermal conductivity and dynamic viscosity play key role in heat transfer capacity of nanofluids. In the present study, thermal conductivity and dynamic viscosity of Fe2O3/water are modeled by applying various artificial neural network algorithms. The applied algorithms are MLP, GA-RBF, LSSVM, and CHPSO ANFIS algorithms. The data for modeling procedure are extracted from several experimental studies. Obtained results by the different algorithms are compared and it was concluded that the highest R-squared values belonged to GA-RBF algorithm which were equal to 0.9962 and 0.9982 for thermal conductivity ratio and dynamic viscosity, respectively.

Для данного заглавия нет комментариев.

оставить комментарий.