Approximate Solutions of the One-Dimensional Fisher–Kolmogorov–Petrovskii– Piskunov Equation with Quasilocal Competitive Losses / A. V. Shapovalov

Уровень набора: Russian Physics JournalОсновной Автор-лицо: Shapovalov, A. V., mathematician, Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences, 1949-, Aleksandr VasilyevichКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Исследовательская школа физики высокоэнергетических процессов, (2017- )Язык: английский ; резюме, eng.Резюме или реферат: The modified Fisher–Kolmogorov–Petrovskii–Piskunov equation with quasilocal quadratic competitive losses and variable coefficients in the small nonlocality parameter approximation is reduced to an equation with a nonlinear diffusion coefficient. Within the framework of a perturbation method, equations are obtained for the first terms of an asymptotic expansion of an approximate solution of the reduced equation. Particular solutions in separating variables are considered for the equations determining the first terms of the asymptotic series. The problem is reduced to an elliptic integral and one linear, homogeneous ordinary differential equation..Примечания о наличии в документе библиографии/указателя: [References: 16 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | Fisher–Kolmogorov–Petrovskii–Piskunov equation | quasilocal competitive losses | perturbation method | separation of variables Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 16 tit.]

The modified Fisher–Kolmogorov–Petrovskii–Piskunov equation with quasilocal quadratic competitive losses and variable coefficients in the small nonlocality parameter approximation is reduced to an equation with a nonlinear diffusion coefficient. Within the framework of a perturbation method, equations are obtained for the first terms of an asymptotic expansion of an approximate solution of the reduced equation. Particular solutions in separating variables are considered for the equations determining the first terms of the asymptotic series. The problem is reduced to an elliptic integral and one linear, homogeneous ordinary differential equation.

Для данного заглавия нет комментариев.

оставить комментарий.