On a problem in geometry of numbers arising in spectral theory / Yu. A. Kordyukov, A. A. Yakovlev

Уровень набора: Russian Journal of Mathematical PhysicsОсновной Автор-лицо: Kordyukov, Yu. A., Yuri ArkadievichАльтернативный автор-лицо: Yakovlev, A. A., specialist in the field of petroleum engineering, First Vice-Rector, Associate Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences, 1981-, Andrey AlexandrovichЯзык: английский.Резюме или реферат: We study the lattice point counting problem for a class of families of domains in a Euclidean space. This class consists of anisotropically expanding bounded domains that remain unchanged along some fixed linear subspace and expand in directions orthogonal to this subspace. We find the leading term in the asymptotics of the number of lattice points in such family of domains and prove remainder estimates in this asymptotics under various conditions on the lattice and the family of domains. As a consequence, we prove an asymptotic formula for the eigenvalue distribution function of the Laplace operator on a flat torus in adiabatic limit determined by a linear foliation with a nontrivial remainder estimate..Примечания о наличии в документе библиографии/указателя: [References: 11 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | linear subspace | asymptotic formula | algebraic number | rectangular parallelepiped | adiabatic limit | линейное подпространство | асимптотическая формула | алгебраическое число | прямоугольный параллелепипед | адиабатический предел Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 11 tit.]

We study the lattice point counting problem for a class of families of domains in a Euclidean space. This class consists of anisotropically expanding bounded domains that remain unchanged along some fixed linear subspace and expand in directions orthogonal to this subspace. We find the leading term in the asymptotics of the number of lattice points in such family of domains and prove remainder estimates in this asymptotics under various conditions on the lattice and the family of domains. As a consequence, we prove an asymptotic formula for the eigenvalue distribution function of the Laplace operator on a flat torus in adiabatic limit determined by a linear foliation with a nontrivial remainder estimate.

Для данного заглавия нет комментариев.

оставить комментарий.