Symmetries of the Fisher–Kolmogorov–Petrovskii–Piskunov equation with a nonlocal nonlinearity in a semiclassical approximation / E. A. Levchenko, A. V. Shapovalov, A. Yu. Trifonov
Уровень набора: Journal of Mathematical Analysis and Applications, Scientific JournalЯзык: английский.Страна: .Резюме или реферат: The classical group analysis approach used to study the symmetries of integro-differential equations in a semiclassical approximation is considered for a class of nearly linear integro-differential equations. In a semiclassical approximation, an original integro-differential equation leads to a finite consistent system of differential equations whose symmetries can be calculated by performing standard group analysis.The approach is illustrated by the calculation of the Lie symmetries in explicit form for a special case of the one-dimensional nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov population equation.Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | integro-differential equation | интегро-дифференциальные уравнения | linear equation | линейные уравнения | semiclassical approximation | приближения | Lie symmetries | симметрии Ресурсы он-лайн:Щелкните здесь для доступа в онлайнНет реальных экземпляров для этой записи
Title screen
The classical group analysis approach used to study the symmetries of integro-differential equations in a semiclassical approximation is considered for a class of nearly linear integro-differential equations. In a semiclassical approximation, an original integro-differential equation leads to a finite consistent system of differential equations whose symmetries can be calculated by performing standard group analysis.The approach is illustrated by the calculation of the Lie symmetries in explicit form for a special case of the one-dimensional nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov population equation
Для данного заглавия нет комментариев.
Личный кабинет оставить комментарий.