Tradeoff Search Methods between Interpretability and Accuracyof the Identification Fuzzy Systems Based on Rules / A. E. Yankovskaya, I. V. Gorbunov, I. A. Khodashinsky

Уровень набора: Pattern Recognition and Image AnalysisОсновной Автор-лицо: Yankovskaya, A. E., specialist in the field of electrical engineering, Professor of Tomsk Polytechnic University, doctor of technical Sciences, 1939-, Anna EfimovnaАльтернативный автор-лицо: Gorbunov, I. V.;Khodashinsky, I. A.Коллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Инженерная школа энергетики, Отделение электроэнергетики и электротехникиЯзык: английский.Страна: .Резюме или реферат: This paper starts a brief historical overview of occurrence and development of fuzzy systems and their applications. Integration methods are proposed to construct a fuzzy system using other AI methods, achieving synergy effect. Accuracy and interpretability are selected as main properties of rule-based fuzzy systems. The tradeoff between interpretability and accuracy is considered to be the actual problem. The purpose of this paper is the in-depth study of the methods and tools to achieve a tradeoff for accuracy and interpretability in rule-based fuzzy systems and to describe our interpretability indexes. A comparison of the existing ways of interpretability estimation has been made We also propose the new way to construct heuristic interpretability indexes as a quantitative measure of interpretability. In the main part of this paper we describe previously used approaches, the current state and original authors’ methods for achieving tradeoff between accuracy and complexity..Примечания о наличии в документе библиографии/указателя: [References: 110 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | accuracy | interpretability | interpretability-accuracy tradeoff | fuzzy modelling | fuzzy system | machine learning | metaheuristic | pattern recognition | synergy | точность | нечеткое моделирование | нечеткие системы | машинное обучение | метаэвристика | распознавание образов | синергия Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 110 tit.]

This paper starts a brief historical overview of occurrence and development of fuzzy systems and their applications. Integration methods are proposed to construct a fuzzy system using other AI methods, achieving synergy effect. Accuracy and interpretability are selected as main properties of rule-based fuzzy systems. The tradeoff between interpretability and accuracy is considered to be the actual problem. The purpose of this paper is the in-depth study of the methods and tools to achieve a tradeoff for accuracy and interpretability in rule-based fuzzy systems and to describe our interpretability indexes. A comparison of the existing ways of interpretability estimation has been made We also propose the new way to construct heuristic interpretability indexes as a quantitative measure of interpretability. In the main part of this paper we describe previously used approaches, the current state and original authors’ methods for achieving tradeoff between accuracy and complexity.

Для данного заглавия нет комментариев.

оставить комментарий.