Multi-Criteria Efficiency Analysis of Using Waste-Based Fuel Mixtures in the Power Industries of China, Japan, and Russia / K. Yu. Vershinina, V. V. Dorokhov, D. S. Romanov [et al.]

Уровень набора: Applied SciencesАльтернативный автор-лицо: Vershinina, K. Yu., specialist in the field of heat and power engineering, laboratory assistant of Tomsk Polytechnic University, 1992-, Kseniya Yurievna;Dorokhov, V. V., specialist in the field of thermal power engineering and heat engineering, Research Engineer of Tomsk Polytechnic University, 1997-, Vadim Valerjevich;Romanov, D. S., specialist in the field of thermal power engineering and heat engineering, Research Engineer of Tomsk Polytechnic University, 1997-, Daniil Sergeevich;Nyashina, G. S., specialist in the field of heat and power engineering, laboratory assistant of Tomsk Polytechnic University, 1992-, Galina Sergeevna;Kuznetsov, G. V., Specialist in the field of heat power energy, Professor of Tomsk Polytechnic University, Doctor of Physical and Mathematical Sciences, 1949-, Geny VladimirovichКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Инженерная школа энергетики, Научно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова);Национальный исследовательский Томский политехнический университет, Исследовательская школа физики высокоэнергетических процессов, (2017- )Язык: английский.Страна: .Резюме или реферат: This paper presents the results of analyzing the efficiency of the following five fuel types: dry coal, wet coal processing waste, coal–water slurry, and two waste-derived slurries. In the calculations, we employed 16 criteria related to the energy industry, economy, social aspects, safety at plants, and environmental protection. We used the experimental data, obtained from the combustion of the fuels under study at three heating temperatures (700 °C, 800 °C, and 900 °C). Three countries were analyzed, where all of them have a high share of using fossil fuels in the energy industry: Japan, China, and Russia. The total performance indicator was calculated using three multiple-criteria decision analysis techniques (weighted sum method, weighted product method, and analytic hierarchy process). The choice of weight coefficients was confirmed for each method. We found that coal and coal–water slurry had the lowest integral efficiency indicators (0.016–0.535 and 0.045–0.566, respectively). The maximum effect was achieved when using waste-derived slurry with used turbine oil (0.190–0.800) and coal processing waste (0.535–0.907). There were, on average, 3%–60% differences in the integral efficiency indicator for the same fuel in different countries. The difference in the efficiency indicator of the same fuel in different countries was on average 3%–60%; with changes in temperature, the difference in efficiency was 5%–20%; and when changing the calculation procedure, the difference was 10%–90%..Примечания о наличии в документе библиографии/указателя: [References: 40 tit.].Тематика: электронный ресурс | труды учёных ТПУ | multi-criteria analysis | coalwater slurries | coal and oil processing waste | coal | efficiency indicators | водоугольные суспензии | отходы | каменный уголь Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 40 tit.]

This paper presents the results of analyzing the efficiency of the following five fuel types: dry coal, wet coal processing waste, coal–water slurry, and two waste-derived slurries. In the calculations, we employed 16 criteria related to the energy industry, economy, social aspects, safety at plants, and environmental protection. We used the experimental data, obtained from the combustion of the fuels under study at three heating temperatures (700 °C, 800 °C, and 900 °C). Three countries were analyzed, where all of them have a high share of using fossil fuels in the energy industry: Japan, China, and Russia. The total performance indicator was calculated using three multiple-criteria decision analysis techniques (weighted sum method, weighted product method, and analytic hierarchy process). The choice of weight coefficients was confirmed for each method. We found that coal and coal–water slurry had the lowest integral efficiency indicators (0.016–0.535 and 0.045–0.566, respectively). The maximum effect was achieved when using waste-derived slurry with used turbine oil (0.190–0.800) and coal processing waste (0.535–0.907). There were, on average, 3%–60% differences in the integral efficiency indicator for the same fuel in different countries. The difference in the efficiency indicator of the same fuel in different countries was on average 3%–60%; with changes in temperature, the difference in efficiency was 5%–20%; and when changing the calculation procedure, the difference was 10%–90%.

Для данного заглавия нет комментариев.

оставить комментарий.