Clarkson’s inequalities for periodic Sobolev space / I. V. Korytov
Уровень набора: Lobachevskii Journal of Mathematics = 1998-Язык: английский.Резюме или реферат: The validity of Clarkson’s inequalities for periodic functions in the Sobolev space normed without the use of pseudodifferential operators is proved. The norm of a function is defined by using integrals over a fundamental domain of the function and its generalized partial derivatives of all intermediate orders. It is preliminarily shown that Clarkson’s inequalities hold for periodic functions integrable to some power p over a cube of unit measure with identified opposite faces. The work is motivated by the necessity of developing foundations for the functional-analytic approach to evaluating approximation methods..Примечания о наличии в документе библиографии/указателя: [References: p. 1155 (22 tit.)].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | равномерные выпуклости | единичные сферы | банахово пространство | пространство Соболева | гильбертово пространство | функциональное пространство | обратное неравенство Минковского | неравенства Кларксона | uniform convexity of the unit sphere | Banach space | Sobolev space | non-Hilbert space | periodic function space | inverse Minkowski inequality | cube of unit measure | Clarksons inequalities Ресурсы он-лайн:Щелкните здесь для доступа в онлайнНет реальных экземпляров для этой записи
Title screen
[References: p. 1155 (22 tit.)]
The validity of Clarkson’s inequalities for periodic functions in the Sobolev space normed without the use of pseudodifferential operators is proved. The norm of a function is defined by using integrals over a fundamental domain of the function and its generalized partial derivatives of all intermediate orders. It is preliminarily shown that Clarkson’s inequalities hold for periodic functions integrable to some power p over a cube of unit measure with identified opposite faces. The work is motivated by the necessity of developing foundations for the functional-analytic approach to evaluating approximation methods.
Для данного заглавия нет комментариев.
Личный кабинет оставить комментарий.