Investigation of the interaction of liquid tin-lithium alloy with austenitic stainless steel at high temperatures / Yu. V. Ponkratov, K. K. Samarkhanov, V. V. Baklanov [et al.]

Уровень набора: Fusion Engineering and DesignАльтернативный автор-лицо: Ponkratov, Yu. V.;Samarkhanov, K. K.;Baklanov, V. V.;Gordienko, Yu. N.;Kenzhina, I. E.;Bochkov, V. S.;Tulubayev, Ye. Yu.;Orazgaliyev, N. A.;Saparbek, E.Язык: английский.Страна: .Резюме или реферат: This paper describes research work to determine the corrosion compatibility of material of the capillary-porous structure (CPS) matrix with a liquid tin-lithium (Sn-Li) alloy at high temperatures. The studies were carried out with the Sn-Li alloy containing 73 at.% of tin and 27 at.% of lithium and samples of 12Cr18Ni10Ti grade austenitic stainless-steel. This steel was proposed as one of the options as a candidate material for the Sn-Li CPS matrix manufacturing. Experiments on the interaction of a liquid Sn-Li alloy with stainless-steel at high temperatures were carried out on the TiGrA experimental facility based on the Mettler Toledo TGA/DSC 3+ thermogravimetric analyzer. The temperature gap in corrosion experiments ranged from 600 °C to 1000 °C, the interaction time for each temperature level was about 10 h. In the course of the work, experiments were carried out to study the compatibility of a Sn-Li alloy in the liquid phase with stainless-steel at temperatures of 600 °C, 800 °C and 1000 °C. Post-experimental studies of stainless-steel samples were carried out using microstructural and energy-dispersive analysis. Based on the results obtained, it was determined that when stainless-steel interacts with an Sn-Li alloy at high temperatures, complex physical-chemical processes occur, such as: selective dissolution of steel components by a liquid alloy; permeation of the liquid alloy into stainless-steel; mass transfer of dissolved metals from a solid metal to a liquid one..Примечания о наличии в документе библиографии/указателя: [References: 28 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | capillary-porous structure | plasma-facing material | Sn-Li alloy | stainless-steel | corrosion | microstructural analysis | капиллярно-пористые структуры | нержавеющая сталь | коррозия | микроструктурный анализ Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 28 tit.]

This paper describes research work to determine the corrosion compatibility of material of the capillary-porous structure (CPS) matrix with a liquid tin-lithium (Sn-Li) alloy at high temperatures. The studies were carried out with the Sn-Li alloy containing 73 at.% of tin and 27 at.% of lithium and samples of 12Cr18Ni10Ti grade austenitic stainless-steel. This steel was proposed as one of the options as a candidate material for the Sn-Li CPS matrix manufacturing. Experiments on the interaction of a liquid Sn-Li alloy with stainless-steel at high temperatures were carried out on the TiGrA experimental facility based on the Mettler Toledo TGA/DSC 3+ thermogravimetric analyzer. The temperature gap in corrosion experiments ranged from 600 °C to 1000 °C, the interaction time for each temperature level was about 10 h. In the course of the work, experiments were carried out to study the compatibility of a Sn-Li alloy in the liquid phase with stainless-steel at temperatures of 600 °C, 800 °C and 1000 °C. Post-experimental studies of stainless-steel samples were carried out using microstructural and energy-dispersive analysis. Based on the results obtained, it was determined that when stainless-steel interacts with an Sn-Li alloy at high temperatures, complex physical-chemical processes occur, such as: selective dissolution of steel components by a liquid alloy; permeation of the liquid alloy into stainless-steel; mass transfer of dissolved metals from a solid metal to a liquid one.

Для данного заглавия нет комментариев.

оставить комментарий.