000 09620nla2a2200613 4500
001 301486
005 20231029223441.0
035 _a(RuTPU)RU\TPU\book\326658
035 _aRU\TPU\book\326550
090 _a301486
100 _a20150731d2015 k y0rusy50 ca
101 0 _arus
102 _aRU
135 _adrgn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aТермодинамический анализ процесса алкилирования бензола пропиленом
_fА. А. Чудинова [и др.]
203 _aТекст
_cэлектронный
215 _a1 файл (245 Kb)
230 _aЭлектронные текстовые данные (1 файл : 245 Kb)
300 _aЗаглавие с титульного листа
300 _aЭлектронная версия печатной публикации
320 _a[Библиогр.: с. 127 (20 назв.)]
330 _aАктуальность работы обусловлена широким применением процессов алкилирования в промышленности и необходимостью создания адекватной по своей прогнозирующей способности математической модели, пригодной для решения технологических задач производства изопропилбензола в присутствии хлорида алюминия. Цель работы: определение и исследование термодинамических и кинетических закономерностей процесса алкилирования бензола пропиленом в присутствии хлорида алюминия с использованием методов квантовой химии. Методы исследования: электронно-структурный метод, основанный на теории функционала плотности (ТФП, DFT) на уровне B3LYP. Поиск переходных состояний реакций в присутствии кислот Льюиса был выполнен методом QST2 на уровне B3LYP/6-31++G(d,p) и LSDA/6-31++G(d,p). Результаты. Определенные с использованием методов квантовой химии термодинамические параметры основных реакций, протекающих в процессе получения кумола, позволили выполнить сравнение двух конкурирующих реакций - алкилирования и трансалкилирования. В результате было определено, что первая реакция обладает наименьшей энергией активации (для реакции алкилирования бензола пропиленом 150,94 кДж/моль при значении предэкспоненциального множителя в уравнении Аррениуса 1,58×105 , для реакции трансалкилирования энергия активации и предэкспоненциальный множитель в уравнении Аррениуса равны 156,13 кДж/моль и 5,34×104 , соответственно). Установленные закономерности легли в основу математической модели процесса алкилирования, которая позволяет прогнозировать качество получаемого алкилата в зависимости от режима проведения процесса в реакторе алкилирования. Погрешность расчетов по модели таких показателей, как выход целевого продукта изопропилбензола и побочных компонентов, определяющих качество продукта (н-пропилбензола, этилбензола, полиалкилбензолов), не превышает 7-10 %.
330 _aRelevance of the research is caused by broad application of alkylation in industry and the necessity to develop a mathematical model adequate on the predicting ability and suitable for solving the technological problems in producing cumene with aluminum chloride. The main aim of the study is to define and to study the thermodynamic and kinetic regularities of benzene alkylation with propylene in the presence of aluminum chloride applying the methods of quantum chemistry. The methods used in the study: electronic-structural method based on density functional theory (DFT, DFT) at B3LYP. Search for transition state of the reaction in the presence of Lewis acids was performed by QST2 at B3LYP / 6-31 ++ G(d,p) and LSDA / 6-31 ++ G(d,p). The results. The thermodynamic parameters of the main reactions, defined by the methods of quantum chemistry, proceeding in the course of obtaining cumene, allowed comparing two competing reactions - alkylation and transalkylation. As a result it was ascertained that the first reaction possesses the lowest activation energy (for benzene alkylation with propylene it is 150,94 kJ/mol at preexponential multiplier value in Arrhenius's 1,58×105 equation, for transalkylation reaction the activation energy and a preexponential multiplier in Arrhenius's equation equal 156,13 kJ/mol and 5,34×104 , respectively). The regularities determined became the basis of the mathematical model of the alkylation process that allows predicting the quality of the alkylate depending on the process mode in the alkylation reactor. Accuracy of calculations by the model of such indicators as the yield of main and secondary components that determine the quality of the product (n-propylbenzene, ethylbenzene, polyalkilbenzenes) does not exceed 7-10 %.
337 _aAdobe Reader
453 _tThermodynamic analysis of benzene alkylation with propylene
_otranslation from Russian
_fA. A. Chudinova [et al.]
_cTomsk
_nTPU Press
_d2015
_d2015
453 _tBulletin of the Tomsk Polytechnic University. Geo Assets Engineering
453 _tVol. 326, № 7
461 1 _0(RuTPU)RU\TPU\book\312844
_x2413-1830
_tИзвестия Томского политехнического университета [Известия ТПУ]. Инжиниринг георесурсов
_fНациональный исследовательский Томский политехнический университет (ТПУ)
_d2015-
463 1 _0(RuTPU)RU\TPU\book\326499
_tТ. 326, № 7
_v[С. 121-129]
_d2015
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aбензол
610 1 _aпропилен
610 1 _aизопропилбензол
610 1 _aпереходное состояние
610 1 _aэнергетический профиль реакции
610 _abenzene
610 _apropylene
610 _acumene
610 _atransition state
610 _aenergy profile of reaction
701 1 _aЧудинова
_bА. А.
_gАлена Анатольевна
_6z01712
701 1 _aНурмаканова
_bА. Е.
_gАсем Еслямбековна
_6z02712
701 1 _aСалищева
_bА. А.
_gАнастасия Александровна
_6z03712
701 1 _aИвашкина
_bЕ. Н.
_cхимик-технолог
_cдоцент Томского политехнического университета, кандидат технических наук
_f1983-
_gЕлена Николаевна
_2stltpush
_3(RuTPU)RU\TPU\pers\24965
_6z04712
712 0 2 _aНациональный исследовательский Томский политехнический университет (ТПУ)
_bИнститут природных ресурсов (ИПР)
_bКафедра химической технологии топлива и химической кибернетики (ХТТ)
_h105
_2stltpush
_3(RuTPU)RU\TPU\col\18665
_6z01701
712 0 2 _aНациональный исследовательский Томский политехнический университет (ТПУ)
_bИнститут природных ресурсов (ИПР)
_bКафедра химической технологии топлива и химической кибернетики (ХТТ)
_h105
_2stltpush
_3(RuTPU)RU\TPU\col\18665
_6z02701
712 0 2 _aНациональный исследовательский Томский политехнический университет (ТПУ)
_bИнститут природных ресурсов (ИПР)
_bКафедра химической технологии топлива и химической кибернетики (ХТТ)
_h105
_2stltpush
_3(RuTPU)RU\TPU\col\18665
_6z03701
712 0 2 _aНациональный исследовательский Томский политехнический университет (ТПУ)
_bИнститут природных ресурсов (ИПР)
_bКафедра химической технологии топлива и химической кибернетики (ХТТ)
_h105
_2stltpush
_3(RuTPU)RU\TPU\col\18665
_6z04701
801 2 _aRU
_b63413507
_c20190520
_gPSBO
856 4 _uhttp://earchive.tpu.ru/bitstream/11683/5527/1/bulletin_tpu-2015-326-7-14.pdf
942 _cCF