000 14429nla2a2200625 4500
001 312528
005 20231029225059.0
035 _a(RuTPU)RU\TPU\book\337897
090 _a312528
100 _a20151223d2015 k y0rusy50 ca
101 0 _arus
102 _aRU
135 _adrgn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aВид и структура дифференциальных уравнений движения и процесса уравновешивания роторной машины с автобалансирами
_fВ. В. Гончаров, Г. Б. Филимонихин
203 _aТекст
_cэлектронный
215 _a1 файл (377 Kb)
230 _aЭлектронные текстовые данные (1 файл : 377 Kb)
300 _aЗаглавие с титульного листа
320 _a[Библиогр.: с. 28-29 (23 назв.)]
330 _aАктуальность работы обусловлена необходимостью исследования процесса уравновешивания автобалансирами роторных машин в оборудовании объектов добычи и транспортировки георесурсов, в частности в шахтных вентиляторах, в газотурбинных установках при транспортировке природного газа. Цель работы. Установить структуру и конкретизировать вид дифференциальных уравнений, описывающих движение роторной машины с автобалансирами со многими корригирующими грузами и процесс уравновешивания ротора автобалансирами. Методы исследования. Элементы теоретической механики, теории устойчивости движений механических систем по Ляпунову, теории роторных машин. Результаты. В рамках упрощенной теории роторных машин с автобалансирами со многими корригирующими грузами установлена структура и конкретизирован вид систем дифференциальных уравнений, описывающих движение роторной машины и процесс уравновешивания ротора автобалансирами. Установлено, что роторная машина условно состоит из нескольких взаимодействующих между собой частей - ротора (ротора в корпусе) и неуравновешенных автобалансиров. Неуравновешенные автобалансиры действуют на ротор с силами, приложенными в точках подвеса автобалансиров и равными вторым производным по времени от векторов суммарных дисбалансов. Ротор влияет на движение корригирующих грузов в автобалансире переносными силами инерции, пропорциональными ускорениям точек подвеса автобалансира. Система дифференциальных уравнений, описывающая движение роторной машины, составлена относительно обобщенных координат машины. Эта система состоит из двух и более связанных подсистем.
330 _aПервая - описывает движение ротора. Ее всегда можно записать относительно обобщенных координат, описывающих движение ротора и изменение суммарных дисбалансов ротора и автобалансира в каждой плоскости коррекции. При этом если ротор установлен с возможностью вращения вокруг своей продольной оси в корпус, удерживаемый податливыми опорами, то ротор и корпус образуют условный составной ротор (более массивный и вытянутый, чем сам ротор) и уравнения составляются для него. Количество остальных подсистем равно числу автобалансиров, уравновешивающих ротор. При этом подсистема, соответствующая j-му автобалансиру, имеет стандартный вид и описывает движение корригирующих грузов в этом автобалансире. Она состоит из nj дифференциальных уравнений, где nj - количество корригирующих грузов в j-м автобалансире. Система дифференциальных уравнений, описывающая процесс автобалансировки роторной машины, составлена относительно обобщенных координат ротора и проекций суммарных дисбалансов ротора и автобалансира в каждой плоскости коррекции. Она предназначена для исследования устойчивости семей основных движений и протекания переходных процессов при наступлении автобалансировки. Эта система также состоит из двух и более связанных подсистем. Первая - получается из подсистемы, описывающей движение ротора, если ее записать относительно обобщенных координат ротора и суммарных дисбалансов. Количество остальных подсистем также равно числу автобалансиров. Каждая из этих подсистем имеет стандартный вид и состоит из двух уравнений, получающихся путем комбинирования уравнений движения корригирующих грузов соответствующего автобалансира.
330 _aСформулированы правила составления дифференциальных уравнений, описывающих движение роторной машины и процесс автобалансировки. Они применимы: при любой кинематике движения ротора или ротора, помещенного в корпусе; любом количестве автобалансиров; любом количестве и разных типах корригирующих грузов в автобалансире. Вид дифференциальных уравнений первой подсистемы подтвержден с использованием основных теорем динамики. Сформулированные правила применены для роторной машины, состоящей из ротора, помещенного с возможностью вращения в корпус, удерживаемый податливыми опорами, и двух автобалансиров.
330 _aThe relevance of work is conditioned by a need of investigation of the process of equilibration by auto-balancers of rotating machines in equipment of the extraction and transportation facilities of geo-resources, particularly, in mine ventilators, in gas turbines for natural gas transportation. The main aim of the study is to ascertain the structure and to specify the form of differential equations that describe the motion of a rotary machine with auto-balancers with many corrective weights and differential equations that describe the auto-balancing of rotor. The methods used in the study: elements of theoretical mechanics, Lyapunov stability theory, theories of rotary machines. The results. In the framework of a simplified theory of rotary machines with auto-balancers with many corrective weights the authors ascertained the structure and specified the form of systems of differential equations that describe the movement of a rotary machine and the process of balancing of the rotor by auto-balancers. It was determined that the rotary machine conditionally consists of several interacting parts - a rotor (rotor in corps) and unbalanced auto-balancers. Unbalanced auto-balancers act on the rotor with the forces that apply to the point of suspension of auto-balancers and are equal to the second derivative by time of the vectors of the total imbalances. The rotor affects the movement of the corrective weights in auto-balancers by forces of moving space that are proportional to the acceleration of points of suspension of auto-balancers. The system of differential equations describing the motion of a rotary machine was drawn up with respect to the generalized coordinates of the machine. It is composed of two or more of the associated subsystems.
330 _aThe first - describes the motion of the rotor. It can always be written relatively to the generalized coordinates that describe the motion of the rotor and total imbalances of the rotor and auto-balancer in each correction plane. Thus, if the rotor is mounted with rotation around its longitudinal axis in the corps which is held by pliant supports then the rotor and the corps form a conditioned composite rotor (more elongated and massive than the rotor) and the equations are made for it. The number of other subsystems equals to the number of auto-balancers which counterbalance the rotor. Thus, the subsystem, corresponding to j-th auto-balancer, has a standard form and describes the motion of the corrective weights in this auto-balancer. It consists of nj differential equations, where nj - the number of corrective weights in j-th auto-balancer. The system of differential equations that describes the process of auto-balancing of the rotary machine is compiled relatively of generalized coordinates of the rotor and of projections of the total imbalances of the rotor and auto-balancer in each correction plane. It is designed to investigate the stability of families of basic movements and the behavior of transients at auto-balancing. This system also consists of two or more of the associated subsystems. The first is obtained from the subsystem, describing the motion of the rotor if we write it relatively to the generalized coordinates of the rotor and total imbalances. The number of other subsystems also equals to the number of auto-balancers. Each of these subsystems has a standard form and consists of two equations that are obtained by combination of the equations of motion of corrective weights of corresponding auto-balancer.
330 _aRules of composition of differential equations describing the motion of the rotary machine and the process of auto-balancing are formulated. They are applicable for any kinematics of the rotor motion (the rotor, placed in the corps); for any number of auto-balancers; for any number and different types of corrective weights in auto-balancer. The type of differential equations of the first subsystem is confirmed using the basic theorems of dynamics. The formulated rules were applied to the rotary machine consisting of the rotor placed in the corps with the possibility to be rotated, which is held by pliant supports, and of two auto-balancers.
337 _aAdobe Reader
453 _tForm and structure of differential equations of motion and process of auto-balancing in the rotor machine with auto-balancers
_otranslation from Russian
_fV. V. Goncharov, G. B. Filimonikhin
_cTomsk
_nTPU Press
_d2015-
_d2015
_aGoncharov, Valeriy Vladimirovich
453 _tBulletin of the Tomsk Polytechnic University. Geo Assets Engineering
453 _tVol. 326, № 12
461 1 _0(RuTPU)RU\TPU\book\312844
_x2413-1830
_tИзвестия Томского политехнического университета [Известия ТПУ]. Инжиниринг георесурсов
_fНациональный исследовательский Томский политехнический университет (ТПУ)
_d2015-
463 1 _0(RuTPU)RU\TPU\book\337786
_tТ. 326, № 12
_v[С. 20-30]
_d2015
610 1 _aэлектронный ресурс
610 1 _aроторные машины
610 1 _aроторы
610 1 _aдисбалансы
610 1 _aавтобалансиры
610 1 _aавтобалансировка
610 1 _aдифференциальные уравнения
610 1 _aпереходные процессы
610 _arotor machine
610 _arotor
610 _aunbalance
610 _aauto-balancer
610 _adifferential equations
610 _aauto-balancing
610 _atransients
700 1 _aГончаров
_bВ. В.
_gВалерий Владимирович
_6z01712
701 1 _aФилимонихин
_bГ. Б.
_gГеннадий Борисович
_6z02712
712 0 2 _aКировоградский национальный технический университет (КНТУ)
_c(2004- )
_2stltpush
_3(RuTPU)RU\TPU\col\5801
_6z01700
712 0 2 _aКировоградский национальный технический университет (КНТУ)
_c(2004- )
_2stltpush
_3(RuTPU)RU\TPU\col\5801
_6z02701
801 2 _aRU
_b63413507
_c20190520
_gPSBO
856 4 _uhttp://earchive.tpu.ru/bitstream/11683/7483/1/bulletin_tpu-2015-v326-i12-02.pdf
942 _cCF