000 | 03850nlm0a2200577 4500 | ||
---|---|---|---|
001 | 379602 | ||
005 | 20231030003951.0 | ||
035 | _a(RuTPU)RU\TPU\retro\37069 | ||
035 | _aRU\TPU\network\28439 | ||
090 | _a379602 | ||
100 | _a20231020a2018 k y0engy50 ba | ||
101 | 0 | _aeng | |
105 | _ay z 100zy | ||
135 | _adrgn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aGMDH-Based Learning System for Mobile Robot Navigation in Heterogeneous Environment _fA. A. Andrakhanov, A. S. Belyaev |
|
203 |
_aText _celectronic |
||
225 | 1 | _aAdvances in Intelligent Systems and Computing book series | |
300 | _aTitle screen | ||
320 | _a[References: 17 tit.] | ||
330 | _aOne of the key tasks of mobile robotics is navigation, which for Outdoor-type robots is exacerbated by the functioning in an environment with a priori of unknown characteristics of underlying surfaces. In this paper, for the first time, the learning navigation system for mobile robot based on the group method of data handling (GMDH) is presented. The paper presents the results of training of models both for evaluating the robot’s pose (coordinates and angular orientation) in heterogeneous environment and classification of the type of underlying surfaces. In addition to the direct readings of the on-board sensors, additional parameters (reflecting how the robot perceives the surface terramechanics) were introduced to train the models. The results of testing of the obtained models demonstrate their performance in an essentially heterogeneous environment, when areas of the underlying surfaces are comparable with the robot’s dimensions. This testifies the operability of developed GMDH-based learning system for mobile robot navigation. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | _tAdvances in Intelligent Systems and Computing II | ||
463 |
_tVol. 689 : Computer Science and Information Technologies (CSIT 2017) _oselected зapers from the International Conference, September 5–8, 2017, Lviv, Ukraine _o[proceedings] _v[P. 1-20] _d2018 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _amobile robot | |
610 | 1 | _aheterogeneous environment | |
610 | 1 | _aunderlying surface | |
610 | 1 | _atesting ground | |
610 | 1 | _anavigation | |
610 | 1 | _acoordinates evaluation | |
610 | 1 | _amachine learning | |
610 | 1 | _ainductive modeling | |
610 | 1 | _aGMDH | |
610 | 1 | _aactive neuron | |
610 | 1 | _aFesto Robotino | |
610 | 1 | _aмобильные роботы | |
610 | 1 | _aгетерогенная среда | |
610 | 1 | _aподстилающие поверхности | |
610 | 1 | _aиспытательные полигоны | |
610 | 1 | _aнавигация | |
610 | 1 | _aмашинное обучение | |
610 | 1 | _aмоделирование | |
700 | 1 |
_aAndrakhanov _bA. A. _cSpecialist in the field of electrical engineering _cAssistant of the Department of Tomsk Polytechnic University _f1982- _gAnatoliy Aleksandrovich _2stltpush _3(RuTPU)RU\TPU\pers\38561 |
|
701 | 1 |
_aBelyaev _bA. S. _cSpecialist in the field of informatics and computer technology _cAssistant to Tomsk Polytechnic University _f1994- _gAleksandr Sergeevich _yTomsk _2stltpush _3(RuTPU)RU\TPU\pers\38249 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИнженерная школа информационных технологий и робототехники _bОтделение автоматизации и робототехники _h7952 _2stltpush _3(RuTPU)RU\TPU\col\23553 |
801 | 2 |
_aRU _b63413507 _c20231020 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1007/978-3-319-70581-1_1 | |
942 | _cCF |