000 04271naa2a2200469 4500
001 607890
005 20231030034356.0
035 _a(RuTPU)RU\TPU\conf\5296
035 _aRU\TPU\conf\5293
090 _a607890
100 _a20140904d2014 k y0rusy50 ba
101 0 _aeng
102 _aRU
105 _ay z 100zy
135 _adrgn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aTungsten production technology from low-grade tungsten-containing materials
_fD. D. Amanbayev
_gSci. adv. S. N. Chegrincev
203 _aТекст
_cэлектронный
215 _a1 файл (657 Кб)
225 1 _aNuclear technologies as integral part of engineering science in the modern world
230 _aЭлектронные текстовые данные (1 файл : 657 Кб)
300 _aЗаглавие с экрана
320 _a[Библиогр.: с. 17 (8 назв.)]
330 _aTungsten is a worldwide highly-consumed metal. As the tungsten price has increased substantially in the last decade there is an economic imperative to recycle it. It is suggested to involve tungsten-containing metallurgical slags and wastes in reprocessing. Extraction of 87 % of tungsten into solution was reached by autoclave pressure leaching with sodium carbonate (250 g/l) as a leaching agent. Temperature of the process is 220-230°C, solid-to-liquid ratio - 1:5, stirring rate - 60 rpm, duration - 6 hours. After liquor purification from sulfur and silicon by flocculating agent VPK-402, ion-exchange extraction of tungstate-ion was carried out. Sorption properties of two anion-exchange resins - Amberjet 4200 and AV-17-8 - were studied in static conditions. It was revealed that strongly basic anion-exchange resin AV-17-8 in chloride-form is more capable of tungsten in comparison with Amberjet 4200: 42,5 kilos of W/m{3} against 32 kilos of W/m{3}. Carbonate-ions showed a greater affinity to the resin than tungstate-ions, therefore ion-exchange stage was performed in two steps: 1 - to remove CO[3]{2}- from liquor, 2 - extract WO[4]{2}-. Desorption was implemented by NH[4]Cl (50 g/l) with solid-to-liquid ratio 2,5:1 yielding ammonium paratungstate (NH[4])[2]WO[4] (APT). Technology steps for production pure tungsten powder from APT through WO[3] are well-known and described briefly.
337 _aAdobe Reader
463 1 _0(RuTPU)RU\TPU\conf\3581
_tМетодология проектирования молодежного научно-инновационного пространства как основа подготовки современного инженера
_lStrategy design of youth science and innovation environment for modern engineer training
_oсборник научных трудов Международной молодежной научной школы, г. Томск, 2 - 4 апреля 2014 г.
_fНациональный исследовательский Томский политехнический университет (ТПУ) ; под ред. В. В. Верхотуровой и др.
_v[С. 13-17]
_d2014
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aвольфрам
610 1 _aпроизводство
610 1 _aнизкосортные материалы
610 1 _aвольфрамосодержащие материалы
610 1 _aвольфрамсодержащие материалы
700 1 _aAmanbayev
_bD. D.
702 1 _aChegrincev
_bS. N.
_cchemist-technologist
_cEngineer-designer of Tomsk Polytechnic University
_f1987-
_gSergey Nikolaevich
_2stltpush
_4727
712 0 2 _aНациональный исследовательский Томский политехнический университет (ТПУ)
_bФизико-технический институт (ФТИ)
_bКафедра химической технологии редких, рассеянных и радиоактивных элементов (№ 43) (ХТРЭ)
_h56
_2stltpush
_3(RuTPU)RU\TPU\col\18733
801 1 _aRU
_b63413507
_c20101016
801 2 _aRU
_b63413507
_c20210401
_gRCR
856 4 _uhttp://earchive.tpu.ru/handle/11683/64994
856 4 _uhttp://www.lib.tpu.ru/fulltext/c/2014/C07/002.pdf
942 _cBK