000 02354nlm1a2200325 4500
001 636446
005 20231030040135.0
035 _a(RuTPU)RU\TPU\network\420
035 _aRU\TPU\network\271
090 _a636446
100 _a20140128a2013 k y0engy50 ba
101 0 _aeng
102 _aUS
135 _adrnn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aSymmetry and Intertwining Operators for the Nonlocal Gross-Pitaevskii Equation
_fA. L. Lisok, A. V. Shapovalov, A. Yu. Trifonov
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 34 tit.]
330 _aWe consider the symmetry properties of an integro-differential multidimensional Gross-Pitaevskii equation with a nonlocal nonlinear (cubic) term in the context of symmetry analysis using the formalism of semiclassical asymptotics. This yields a semiclassically reduced nonlocal Gross-Pitaevskii equation, which can be treated as a nearly linear equation, to determine the principal term of the semiclassical asymptotic solution. Our main result is an approach which allows one to construct a class of symmetry operators for the reduced Gross-Pitaevskii equation. These symmetry operators are determined by linear relations including intertwining operators and additional algebraic conditions. The basic ideas are illustrated with a 1D reduced Gross-Pitaevskii equation. The symmetry operators are found explicitly, and the corresponding families of exact solutions are obtained
463 _tArxiv.org
_vMathematical Physics
_d2013
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
700 1 _aLisok
_bA. L.
_cphysicist
_cAssociate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical sciences
_f1981-
_gAleksandr Leonidovich
_2stltpush
_3(RuTPU)RU\TPU\pers\31739
701 1 _aShapovalov
_bA. V.
_cmathematician
_cProfessor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences
_f1949-
_gAleksandr Vasilyevich
_2stltpush
_3(RuTPU)RU\TPU\pers\31734
701 1 _aTrifonov
_bA. Yu.
_cphysicist, mathematician
_cProfessor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences
_f1963-
_gAndrey Yurievich
_2stltpush
_3(RuTPU)RU\TPU\pers\30754
801 2 _aRU
_b63413507
_c20180306
_gRCR
856 4 _uhttp://arxiv.org/abs/1302.3326
942 _cCF