000 02090nlm1a2200361 4500
001 636511
005 20231030040137.0
035 _a(RuTPU)RU\TPU\network\504
090 _a636511
100 _a20140207a2007 k y0engy50 ba
101 0 _aeng
102 _aDE
135 _adrnn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aSymmetry Operators for the Fokker-Plank-Kolmogorov Equation with Nonlocal Quadratic Nonlinearity
_fA. V. Shapovalov, R. O. Rezaev, A. Yu. Trifonov
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 33 tit.]
330 _aThe Cauchy problem for the Fokker–Plank–Kolmogorov equation with a nonlocal nonlinear drift term is reduced to a similar problem for the correspondent linear equation. The relation between symmetry operators of the linear and nonlinear Fokker–Plank–Kolmogorov equations is considered. Illustrative examples of the one-dimensional symmetry operators are presented
461 _tSymmetry, Integrability and Geometry: Methods and Applications (SIGMA)
_oScientific Journal
463 _tVol. 3
_v[16 p.]
_d2007
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _asymmetry operators
610 1 _aFokker–Plank–Kolmogorov equation
610 1 _anonlinear partial differential equations
700 1 _aShapovalov
_bA. V.
_cmathematician
_cProfessor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences
_f1949-
_gAleksandr Vasilyevich
_2stltpush
_3(RuTPU)RU\TPU\pers\31734
701 1 _aRezaev
_bR. O.
_cphysicist
_cAssociate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical sciences
_f1982-
_gRoman Olegovich
_2stltpush
_3(RuTPU)RU\TPU\pers\31777
701 1 _aTrifonov
_bA. Yu.
_cphysicist, mathematician
_cProfessor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences
_f1963-
_gAndrey Yurievich
_2stltpush
_3(RuTPU)RU\TPU\pers\30754
801 2 _aRU
_b63413507
_c20180306
_gRCR
856 4 _uhttp://www.emis.de/journals/SIGMA/2007/005/sigma07-005.pdf
942 _cCF