000 02385nlm1a2200337 4500
001 636520
005 20231030040137.0
035 _a(RuTPU)RU\TPU\network\528
090 _a636520
100 _a20140210a2005 k y0engy50 ba
101 0 _aeng
102 _aUS
135 _adrnn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aThe Nonlinear Schrodinger Equation for a Many-Dimensional System in an Oscillator Field
_fA. V. Borisov, A. Yu. Trifonov, A. V. Shapovalov
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: p. 753 (15 tit.)]
330 _aThe method of semi-classical asymptotics is applied to a many-dimensional nonlinear Schrodinger equation with an external anisotropic oscillator field. Solutions asymptotic in a small parameter h, h - 0, are constructed in the class of functions localized in the neighborhood of an unclosed parabolic surface associated with the phase curve that describes the evolution of the vertex of this surface. In the normal direction to the surface, the functions have the form of the one-soliton solution of a one-dimensional nonlinear Schrodinger equation. The asymptotic evolution operator is considered accurate to O(h3/2), h - 0, in the specified class of solutions. The phenomenon of collapse is discussed
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tRussian Physics Journal
_oScientific Journal
463 _tVol. 48, iss. 7
_v[P. 746-753]
_d2005
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
700 1 _aBorisov
_bA. V.
_cmathematician
_cAssociate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical sciences
_f1980-
_gAleksey Vladimirovich
_2stltpush
_3(RuTPU)RU\TPU\pers\31743
701 1 _aTrifonov
_bA. Yu.
_cphysicist, mathematician
_cProfessor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences
_f1963-
_gAndrey Yurievich
_2stltpush
_3(RuTPU)RU\TPU\pers\30754
701 1 _aShapovalov
_bA. V.
_cmathematician
_cProfessor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences
_f1949-
_gAleksandr Vasilyevich
_2stltpush
_3(RuTPU)RU\TPU\pers\31734
801 2 _aRU
_b63413507
_c20180306
_gRCR
856 4 _uhttp://link.springer.com/article/10.1007/s11182-005-0196-9
942 _cCF