000 01862nlm1a2200337 4500
001 636627
005 20231030040140.0
035 _a(RuTPU)RU\TPU\network\657
090 _a636627
100 _a20140220a1991 k y0engy50 ba
101 0 _aeng
102 _aUS
135 _adrnn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aSome problems of symmetry of the Schrodinger equations
_fV. G. Bagrov, B. F. Samsonov, A. V. Shapovalov
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: p. 385 (4 tit.)]
330 _aThe Schrцdinger algebra sch3 is examined as a subalgebra of the algebra k1,4 of conformal transformations of the space R1, 4. Orbits of the associated representations of the Schrцdinger group are found in the algebra sch3. It is proven that all nontrivial local differential symmetry operators of second order belong to the enveloping algebra U(sch3) of the algebra sch3, and the space of these operators is defined. All the absolute identities and identities on the solutions of the Schrцdinger equation are obtained in the space of second-order operators of the algebra U(sch3)
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tSoviet Physics Journal
_oScientific Journal
463 _tVol. 34, iss. 4
_v[P. 382-385]
_d1991
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
701 1 _aBagrov
_bV. G.
701 1 _aSamsonov
_bB. F.
701 1 _aShapovalov
_bA. V.
_cmathematician
_cProfessor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences
_f1949-
_gAleksandr Vasilyevich
_2stltpush
_3(RuTPU)RU\TPU\pers\31734
801 2 _aRU
_b63413507
_c20180306
_gRCR
856 4 _uhttp://link.springer.com/article/10.1007%2FBF00898109
942 _cCF