000 | 01862nlm1a2200337 4500 | ||
---|---|---|---|
001 | 636627 | ||
005 | 20231030040140.0 | ||
035 | _a(RuTPU)RU\TPU\network\657 | ||
090 | _a636627 | ||
100 | _a20140220a1991 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aUS | ||
135 | _adrnn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aSome problems of symmetry of the Schrodinger equations _fV. G. Bagrov, B. F. Samsonov, A. V. Shapovalov |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: p. 385 (4 tit.)] | ||
330 | _aThe Schrцdinger algebra sch3 is examined as a subalgebra of the algebra k1,4 of conformal transformations of the space R1, 4. Orbits of the associated representations of the Schrцdinger group are found in the algebra sch3. It is proven that all nontrivial local differential symmetry operators of second order belong to the enveloping algebra U(sch3) of the algebra sch3, and the space of these operators is defined. All the absolute identities and identities on the solutions of the Schrцdinger equation are obtained in the space of second-order operators of the algebra U(sch3) | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 |
_tSoviet Physics Journal _oScientific Journal |
||
463 |
_tVol. 34, iss. 4 _v[P. 382-385] _d1991 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
701 | 1 |
_aBagrov _bV. G. |
|
701 | 1 |
_aSamsonov _bB. F. |
|
701 | 1 |
_aShapovalov _bA. V. _cmathematician _cProfessor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences _f1949- _gAleksandr Vasilyevich _2stltpush _3(RuTPU)RU\TPU\pers\31734 |
|
801 | 2 |
_aRU _b63413507 _c20180306 _gRCR |
|
856 | 4 | _uhttp://link.springer.com/article/10.1007%2FBF00898109 | |
942 | _cCF |