000 02177nam1a2200361 4500
001 636646
005 20231030040141.0
035 _a(RuTPU)RU\TPU\network\686
035 _aRU\TPU\network\685
090 _a636646
100 _a20140224a1990 k y0engy50 ba
101 0 _aeng
102 _aUS
135 _adrnn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aCommutative subalgebras of three first-order symmetry operators and separation of variables in the wave equation
_fV. G. Bagrov [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: p. 452 (11 tit.)]
330 _aThe problem of complex separation of variables in the wave equation is considered in four-dimensional Minkowskii space-time. In contrast to the known series of researches by Kalnins and Miller (see Ref. Zh., Fiz., 2B9 (1978); 1B208 and 1B209 (1979), e.g.), underlying this research is a theorem on the necessary and sufficient conditions of total separation of variables in the non-parabolic V. N. Shapovalov equation (Differents. Uravn.,16, No. 10, 1864–1874 (1980)). Nonequivalent complete sets of three differential first-order symmetry operators are constructed, appropriate coordinate systems are found, and complete separation of variables is performed in the wave equation
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tSoviet Physics Journal
_oScientific Journal
463 _tVol. 33, iss. 5
_v[P. 448-452]
_d1990
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
701 1 _aBagrov
_bV. G.
_cphysicist
_cProfessor of Tomsk state University
_f1938-
_gVladislav Gavriilovich
_2stltpush
_3(RuTPU)RU\TPU\pers\38248
701 1 _aSamsonov
_bB. F.
701 1 _aShapovalov
_bA. V.
_cmathematician
_cProfessor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences
_f1949-
_gAleksandr Vasilyevich
_2stltpush
_3(RuTPU)RU\TPU\pers\31734
701 1 _aShirokov
_bI. V.
801 2 _aRU
_b63413507
_c20180306
_gRCR
856 4 _uhttp://link.springer.com/article/10.1007%2FBF00896088
942 _cBK