000 | 02177nam1a2200361 4500 | ||
---|---|---|---|
001 | 636646 | ||
005 | 20231030040141.0 | ||
035 | _a(RuTPU)RU\TPU\network\686 | ||
035 | _aRU\TPU\network\685 | ||
090 | _a636646 | ||
100 | _a20140224a1990 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aUS | ||
135 | _adrnn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aCommutative subalgebras of three first-order symmetry operators and separation of variables in the wave equation _fV. G. Bagrov [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: p. 452 (11 tit.)] | ||
330 | _aThe problem of complex separation of variables in the wave equation is considered in four-dimensional Minkowskii space-time. In contrast to the known series of researches by Kalnins and Miller (see Ref. Zh., Fiz., 2B9 (1978); 1B208 and 1B209 (1979), e.g.), underlying this research is a theorem on the necessary and sufficient conditions of total separation of variables in the non-parabolic V. N. Shapovalov equation (Differents. Uravn.,16, No. 10, 1864–1874 (1980)). Nonequivalent complete sets of three differential first-order symmetry operators are constructed, appropriate coordinate systems are found, and complete separation of variables is performed in the wave equation | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 |
_tSoviet Physics Journal _oScientific Journal |
||
463 |
_tVol. 33, iss. 5 _v[P. 448-452] _d1990 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
701 | 1 |
_aBagrov _bV. G. _cphysicist _cProfessor of Tomsk state University _f1938- _gVladislav Gavriilovich _2stltpush _3(RuTPU)RU\TPU\pers\38248 |
|
701 | 1 |
_aSamsonov _bB. F. |
|
701 | 1 |
_aShapovalov _bA. V. _cmathematician _cProfessor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences _f1949- _gAleksandr Vasilyevich _2stltpush _3(RuTPU)RU\TPU\pers\31734 |
|
701 | 1 |
_aShirokov _bI. V. |
|
801 | 2 |
_aRU _b63413507 _c20180306 _gRCR |
|
856 | 4 | _uhttp://link.springer.com/article/10.1007%2FBF00896088 | |
942 | _cBK |