000 03728nla2a2200517 4500
001 639533
005 20231030040322.0
035 _a(RuTPU)RU\TPU\network\4020
035 _aRU\TPU\network\4018
090 _a639533
100 _a20150316a2014 k y0engy50 ba
101 0 _aeng
105 _ay z 100zy
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aHeat Treatment Condition Influence on Novokuibyshevsk Vacuum Residue Component Composition
_fY. Karpov [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: р. 429 (9 tit.)]
330 _aThe article presents the information about thermal degradation of Novokuibyshevsk vacuum residue and change of products composition during this process. The optimal conditions for the thermal destruction of vacuum residue components were established. The regularities of material balance composition change, Sgeneral were determined depending on cracking conditions. The basic directions of resin-asphaltene component transformations were identified, changes in their structural-group parameters in the process of initiated cracking were analyzed. Conducting of Novokuibyshevsk vacuum residue thermolysis leads to deep resins-asphaltenes average molecules structure characteristic changes. Developed alkyl and naphthenic moieties, which are presented in initial molecule, undergo degradation, amount of structural blocks in resins and asphaltenes molecules reduces, their average size decreases. Also the reduction in total content of the rings (saturated and aromatic) was established in average structural unit, at the same time decrease of rings substitution and length of the aliphatic fragments can be observed. In general the process of vacuum residue thermal cracking causes partial degradation of saturated (aliphatic and naphthenic) fragments and, partially, aromatic rings, which contain heteroatomic elements.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 0 _0(RuTPU)RU\TPU\network\3889
_tProcedia Chemistry
463 0 _0(RuTPU)RU\TPU\network\3890
_tVol. 10 : Chemistry and Chemical Engineering in XXI century
_oXV International Scientific Conference dedicated to Professor L. P. Kulyov, 26-29 May 2014, Tomsk, Russia
_fNational Research Tomsk Polytechnic University (TPU)
_v[P. 421-429]
_d2014
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aтермолиз
610 1 _aсмолы
610 1 _aасфальтены
610 1 _aтепловое состояние
610 1 _aвакуумный остаток
610 1 _aкомпонентный состав
610 1 _athermolysis
610 1 _aresins-asphaltenes average molecules
610 1 _avacuum residue
610 1 _aoil refinery
701 1 _aKarpov
_bY.
701 1 _aKrivonosova
_bA.
701 1 _aKrivtsov
_bE.
701 1 _aGolovko
_bA.
701 1 _aKrivtsova
_bN. I.
_cchemical-technologist
_cAssociate Professor of Tomsk Polytechnic University, Candidate of technical sciences
_f1983-
_gNadezhda Igorevna
_2stltpush
_3(RuTPU)RU\TPU\pers\33903
712 0 2 _aНациональный исследовательский Томский политехнический университет (ТПУ)
_bИнститут природных ресурсов (ИПР)
_bКафедра общей химической технологии (ОХТ)
_h100
_2stltpush
_3(RuTPU)RU\TPU\col\18654
801 2 _aRU
_b63413507
_c20161228
_gRCR
856 4 _uhttp://dx.doi.org/10.1016/j.proche.2014.10.071
856 4 _uhttp://earchive.tpu.ru/handle/11683/35525
942 _cCF