000 04082nla2a2200433 4500
001 641421
005 20231030040427.0
035 _a(RuTPU)RU\TPU\network\6338
035 _aRU\TPU\network\6336
090 _a641421
100 _a20150519a2015 k y0engy50 ba
101 0 _aeng
105 _ay z 100zy
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aApplication of Convolutional Neural Networks for Automatic Number Plate Recognition on Complex Background Images
_fA. A. Druki, Yu. A. Bolotova, V. G. Spitsyn
203 _aText
_celectronic
225 1 _aImage and Signal Processing, Recognition, Information Processing and Applied Technologies
300 _aTitle screen
330 _aThe relevance of this study is stipulated by the necessity of designing techniques, algorithms, and programs improving the efficiency of automatic number plate recognition (ANPR) on images with complex backgrounds.Purpose: The aim of this work is to improve the efficiency of automatic number plate recognition on images with complex backgrounds using methods, algorithms, and programs invariant to affine and projective transformations.Design/methodology: Such techniques as artificial intelligence, pattern identification and recognition, the theory of artificial neural networks (ANN), convolutional neural networks (CNN), evolutionary algorithms, mathematical modeling, the probability theory and mathematical statistics were applied via Visual Studio and MatLab software.Findings: The software is developed allowing the automatic number plate recognition on complex background images. The convolutional neural network comprising seven layers is suggested to identify the plate localization, i.e. finding and isolating the plate on the picture. The pixel intensity histogram-based algorithm was used for character segmentation or finding individual characters on the plates. The convolutional neural network comprising six layers is designed to recognize characters. The suggested software system allows automatic number plate recognition at large angles of inclinations and rather a high speed.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 0 _0(RuTPU)RU\TPU\network\5920
_tApplied Mechanics and Materials
_oScientific Journal
463 0 _0(RuTPU)RU\TPU\network\6028
_tVol. 756 : Mechanical Engineering, Automation and Control Systems (MEACS2014)
_oInternational Conference, 16‐18 October, 2014, Tomsk, Russia
_o[proceedings]
_fNational Research Tomsk Polytechnic University (TPU)
_v[P. 695-703]
_d2015
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aискусственный интеллект
610 1 _aраспознавание символов
610 1 _aобработка
610 1 _aизображения
610 1 _aгистограммы
610 1 _aнейтронные сети
700 1 _aDruki
_bA. A.
_cspecialist in the field of informatics and computer technology
_cassistant of Tomsk Polytechnic University, engineer
_f1985-
_gAleksey Alekseevich
_2stltpush
_3(RuTPU)RU\TPU\pers\34610
701 1 _aBolotova
_bYu. A.
_cspecialist in the field of informatics and computer technology
_cPostgraduate of Tomsk Polytechnic University
_f1986-
_gYuliya Aleksandrovna
_2stltpush
_3(RuTPU)RU\TPU\pers\33458
701 1 _aSpitsyn
_bV. G.
_cspecialist in the field of informatics and computer technology
_cProfessor of Tomsk Polytechnic University, Doctor of technical sciences
_f1948-
_gVladimir Grigorievich
_2stltpush
_3(RuTPU)RU\TPU\pers\33492
712 0 2 _aНациональный исследовательский Томский политехнический университет (ТПУ)
_bИнститут кибернетики (ИК)
_bКафедра вычислительной техники (ВТ)
_h126
_2stltpush
_3(RuTPU)RU\TPU\col\18699
801 2 _aRU
_b63413507
_c20161229
_gRCR
856 4 _uhttp://dx.doi.org/10.4028/www.scientific.net/AMM.756.695
942 _cCF