000 02263nlm1a2200361 4500
001 641525
005 20231030040431.0
035 _a(RuTPU)RU\TPU\network\6442
035 _aRU\TPU\network\6440
090 _a641525
100 _a20150521a2004 k y0engy50 ba
101 0 _aeng
102 _aUS
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aQuantum mechanics model on a Kдhler conifold
_fS. Bellucci, A. P. Nersessian, A. Yeranyan
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 11 tit.]
330 _aWe propose an exactly solvable model of the quantum oscillator on the class of Kдhler spaces (with conic singularities), connected with two-dimensional complex projective spaces. Its energy spectrum is nondegenerate in the orbital quantum number, when the space has nonconstant curvature. We reduce the model to a three-dimensional system interacting with the Dirac monopole. Owing to noncommutativity of the reduction and quantization procedures, the Hamiltonian of the reduced system gets nontrivial quantum corrections. We transform the reduced system into a MIC-Kepler-like one and find that quantum corrections arise only in its energy and coupling constant. We present the exact spectrum of the generalized MIC-Kepler system. The one-(complex) dimensional analog of the suggested model is formulated on the Riemann surface over the complex projective plane and could be interpreted as a system with fractional spin.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tPhysical Review D
_oParticles, Fields, Gravitation, and Cosmology
_oScientific Journal
463 _tVol. 70, iss. 4
_v[045006, 5 p.]
_d2004
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
700 1 _aBellucci
_bS.
_gStefano
701 1 _aNersessian
_bA. P.
_cphysicist
_cProfessor of Tomsk Polytechnic University
_f1964-
_gArmen Petrosovich
_2stltpush
_3(RuTPU)RU\TPU\pers\34605
701 1 _aYeranyan
_bA.
_gArmen
801 2 _aRU
_b63413507
_c20150521
_gRCR
856 4 _uhttp://dx.doi.org/10.1103/PhysRevD.70.045006
856 4 _uhttp://arxiv.org/abs/hep-th/0312323
942 _cCF