000 | 04063nla2a2200421 4500 | ||
---|---|---|---|
001 | 641547 | ||
005 | 20231030040431.0 | ||
035 | _a(RuTPU)RU\TPU\network\6464 | ||
035 | _aRU\TPU\network\6462 | ||
090 | _a641547 | ||
100 | _a20150521a2014 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aUS | ||
105 | _ay z 101zy | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aEffect on Grains Form on Performances Grinding Wheels _fA. Korotkov, L. Korotkova, R. Kh. Gubaidulina |
|
203 |
_aText _celectronic |
||
225 | 1 | _aMaterial Science, Machining Technologies and Equipments in Mechanical Engineering | |
300 | _aTitle screen | ||
330 | _aEfficacy of existing designs grinding wheels is relatively low and one of the main reasons for this situation is the lack of control over the shape of grains included in the composition of these tools and their employees cutting elements. Standard wheels are composed of grains with an arbitrary, varying in the range from isometric to the needle-like species. When only part of the grain has a favorable geometry for cutting and participates fully in aggregate nom cutting process. Arranging grain shape and as a consequence, their geometry can increase the efficiency of each individual grain and thus improve the performance of grinding wheels as a whole. The study on the establishment of the variety of forms of grains for abrasives Russian and German production made standard way - by ebb abrasive ingots, their crushing and screening a number of particle size fractions. Studies have shown that each has its abrasive distribution pattern in the manner that depends on the brand of abrasive characteristics of technology and the manufacture of abrasive grit. The interrelation of grain shape to their geometry as derivation of mathematical models. A pilot batch of grinding wheels with controlled grain shape, are prepared by separating the initial mass of abrasive on a number of fractions with the same shape of grains using the vibratory separator. Experimental wheels were tested on the operating processing bearing rings, and as compared with the following instruments used an arbitrary shape of grains. Found that a differentiated approach to the choice of grain shape allows for a increase resistance grinding wheels in 1,5-3,9 times , reduce roughness of machined surfaces in 1.2 - 3.2 times, roundness - 1.3 times, waviness - 2.3 times the wear sized - 2.0 - 3.0 times. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | 1 |
_0(RuTPU)RU\TPU\network\5920 _tApplied Mechanics and Materials _oScientific Journal |
|
463 | 0 |
_0(RuTPU)RU\TPU\network\4804 _tVol. 682 : Innovation Technology and Economics in Engineering _o5th International Scientific Practical Conference, May 22-23, Yurga, Russia _o[proceedings] _fNational Research Tomsk Polytechnic University (TPU) _v[P. 469-473] _d2014 |
|
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aгеометрия | |
610 | 1 | _aзерна | |
610 | 1 | _aподшипники | |
610 | 1 | _aшлифовальные круги | |
700 | 1 |
_aKorotkov _bA. |
|
701 | 1 |
_aKorotkova _bL. |
|
701 | 1 |
_aGubaidulina _bR. Kh. _cspecialist in the field of mechanical engineering _cAssociate Professor of Yurga technological Institute of Tomsk Polytechnic University, candidate of technical sciences, кандидат технических наук _f1951- _gRauza Khamidovna _2stltpush _3(RuTPU)RU\TPU\pers\34713 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет (ТПУ) _bЮргинский технологический институт (филиал) (ЮТИ) _bКафедра технологии машиностроения (ТМС) _h356 _2stltpush _3(RuTPU)RU\TPU\col\18902 |
801 | 2 |
_aRU _b63413507 _c20161230 _gRCR |
|
856 | 4 | _uhttp://dx.doi.org/10.4028/www.scientific.net/AMM.682.469 | |
942 | _cCF |