000 02224nlm1a2200361 4500
001 641564
005 20231030040432.0
035 _a(RuTPU)RU\TPU\network\6481
035 _aRU\TPU\network\6478
090 _a641564
100 _a20150521a2010 k y0engy50 ba
101 0 _aeng
102 _aUS
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aHidden symmetries of integrable conformal mechanical systems
_fT. S. Akopyan (Hakobyan) [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: p. 806 (18 tit.)]
330 _aWe split the generic conformal mechanical system into a “radial” and an “angular” part, where the latter is defined as the Hamiltonian system on the orbit of the conformal group, with the Casimir function in the role of the Hamiltonian. We reduce the analysis of the constants of motion of the full system to the study of certain differential equations on this orbit. For integrable mechanical systems, the conformal invariance renders them superintegrable, yielding an additional series of conserved quantities originally found by Wojciechowski in the rational Calogero model. Finally, we show that, starting from any N=4supersymmetric “angular” Hamiltonian system one may construct a new system with full N=4superconformal D(1,2;α) symmetry.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tPhysics Letters A
_oScientific Journal
463 _tVol. 374, iss. 6
_v[P. 801–806]
_d2010
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
701 1 _aAkopyan (Hakobyan)
_bT. S.
_cphysicist
_cProfessor of Tomsk Polytechnic University, doctor of physical and mathematical sciences
_f1965-
_gTigran Stepanovich
_2stltpush
_3(RuTPU)RU\TPU\pers\35457
701 1 _aKrivonos
_bS.
_gSergey
701 1 _aLechtenfeld
_bO.
_gOlaf
701 1 _aNersessian
_bA. P.
_cphysicist
_cProfessor of Tomsk Polytechnic University
_f1964-
_gArmen Petrosovich
_2stltpush
_3(RuTPU)RU\TPU\pers\34605
801 2 _aRU
_b63413507
_c20151028
_gRCR
856 4 _uhttp://dx.doi.org/10.1016/j.physleta.2009.12.006
942 _cCF