000 02427nlm1a2200373 4500
001 642067
005 20231030040450.0
035 _a(RuTPU)RU\TPU\network\7006
090 _a642067
100 _a20150615a2010 k y0engy50 ba
101 0 _aeng
102 _aUS
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aCharacteristic classes of Q-manifolds: Classification and applications
_fS. L. Lyakhovich, E. A. Mosman, A. A. Sharapov
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: p. 759 (44 tit.)]
330 _aA Q-manifold M is a supermanifold endowed with an odd vector field Q squaring to zero. The Lie derivative LQ along Q makes the algebra of smooth tensor fields on M into a differential algebra. In this paper, we define and study the invariants of Q-manifolds called characteristic classes. These take values in the cohomology of the operator LQ and, given an affine symmetric connection with curvature R, can be represented by universal tensor polynomials in the repeated covariant derivatives of Q and R up to some finite order. As usual, the characteristic classes are proved to be independent of the choice of the affine connection used to define them. The main result of the paper is a complete classification of the intrinsic characteristic classes, which, by definition, do not vanish identically on flat Q-manifolds. As an illustration of the general theory we interpret some of the intrinsic characteristic classes as anomalies in the BV and BFV-BRST quantization methods of gauge theories. An application to the theory of (singular) foliations is also discussed.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tJournal of Geometry and Physics
_oScientific Journal
463 _tVol. 60, iss. 5
_v[P. 729–759]
_d2010
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aQ-manifolds
610 1 _aCharacteristic classes
610 1 _aGauge theories
700 1 _aLyakhovich
_bS. L.
701 1 _aMosman
_bE. A.
_cmathematician
_csenior lecturer of Tomsk Polytechnic University
_f1985-
_gElena Arkadievna
_2stltpush
_3(RuTPU)RU\TPU\pers\34834
701 1 _aSharapov
_bA. A.
801 2 _aRU
_b63413507
_c20150615
_gRCR
856 4 _uhttp://dx.doi.org/10.1016/j.geomphys.2010.01.008
942 _cCF